MASS Software Reference Manual

V.Kornilov, S.Potanin, N.Shatsky, O.Voziakova, A.Zaitsev
Generated by Doxygen 1.2.14

February 28, 2002

Introduction

This document represents the description of the MASS controlling program
- TURBINA from the point of view of programming and implemented al-
gorithms. The TURBINA usage is given in a separate document "MASS
Software User Guide” where the principles of the performing of measure-
ments with MASS are described. The general presentation of the MASS
project is given in "M ASS Final Design Document” where one can find the
scientific objectives and the MASS design presentation. The MASS mainte-
nance separated into another document "MASS Engineer Guide”.

Current Reference consists of two parts which are made almost independent
from each other: Part I ”Instrument Control” contains the description of
the TURBINA program architecture, its basics, modules hierarchy and the
modules related to the MASS device control. The ”scientific” modules are
described in the Part II "Data Processing” where the exact description of
the used formulae, algorithms etc is given for calculation of the scintillation
indices and atmospheric parameters and turbulence profile.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

Part I. Instrument Control

CONTENTS

Contents

1 MASS Software. Part I: Instrument Control 1
2 Part I. Namespace Index 7
3 Part I. Hierarchical Index 7
4 Part I. File Index 9
5 Part I. Namespace Documentation 11
6 Part I. File Documentation 24

1 MASS Software. Part I: Instrument Control

1.1 Introduction

The TURBINA program represents the GUI-interface for managing the mea-
surements of stellar scintillation indices and atmospheric integral parameters
and turbulence profiles. It is written in C++ language and is based on the
Qt libraries which provide the means for creation of GUI components. In
this part of the document, the principles of the program organization, its
modules and their mutual relations and dependencies are described. The
"scientific” modules which deal with scintillation and atmospheric calcula-
tions are described in a second part of MASS Software Reference ”Data
Processing”.

TURBINA is a complex program executed in X-Windows environment
which provides the interface between the User and the device or, more pre-
cisely, its driver inserted in the Linux kernel on the stage of the PC startup.
Its actions and events are naturally asynchronous; the calculations are done
in real-time, in parallel with interaction with user and device and I/O oper-
ations with disk. Apart from this, the CPU time cannot be fully consumed
by TURBINA and must be left for other running system and user’s appli-
cations. So, the program is organized in a complex way which demands an
introduction of some basic notions. They are not specific to TURBINA only
and used in most of similar applications, but it is useful to describe them in
brief here.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

1.2 Basic notions

1.2 Basic notions

In this section, we give a short explanation for ”thread” and ” mutex” notions
on which the TURBINA operation is based.

e Thread is a separate sequence of CPU instructions which serve for one
particular task of application and which can work in parallel with other
threads. Technically, the thread owns its stack and CPU registers sets
which are loaded in CPU when it is under execution. Meanwhile,
all the threads started from one program (i.e. process) operate on the
same memory segment which demands some means for synchronization
of the data access between them (see below).

From the point of view of TURBINA software, the threads which are started
explicitly are realized as infinite cycles. These are the

e the ”Scenario” thread which implements the execution of modes or
their sequences (scenario);

e the ”Data” thread which waits for data blocks from the driver FIFO
and sorts the received data into four buffers associated with the MASS
channels (A, B, C and D).

Two other threads which are started implicitly on the program startup are
the "Main” GUI-thread which serves for the interaction with a user, and
another (”internal”) thread which serves the GUT system.

Since the threads within one program - i.e. TURBINA - share the same
memory segment and need to access the same data structures for exchanging
the information between them, some synchronization of this access from
parallel running threads is needed. It is made by means of Mutez.

e Mutez is a structure in memory (Qt represents the class "QMutex”)
which serves for threads manipulation:

— for their synchronization and for preventing the conflicts while
occasionally simultaneously accessing the same data structures
under modification.

— for stopping/resuming the working of threads according to differ-
ent circumstances occurring in the program execution.

To implement these functions, the mutex has the ("atomic”, i.e. non-
interruptible) functions lock() - to stop execution of (some) thread,
and unlock() - to resume execution of a thread. In TURBINA, the
thread stops itself with the help of the mutex lock() and is resumed

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

1.3 Justification of the threads use and their interaction

from another thread by unlock()-ing of the same mutex. The following
rules describe the behavior of the program (one of its threads) when
its control reaches the mutex lock/unlock instruction:

— lock() on the mutex (variable) which is unlocked results in locking
this mutex and the control goes to the next instruction after
lock(), i.e. the thread continues to work;

— lock() on the mutex which is already locked() stops the current
thread execution until some other thread unlocks this mutex.
Then the previous rule takes place (locking and continuation).

— unlock() on mutex in any state unlocks it and the control goes
further.

In what follows, we will explain the place of these notions in TURBINA
organization.

1.3 Justification of the threads use and their interaction

The key notions presented above help to understand the overall scheme of
working of TURBINA (see Figure 1 below) in execution of its basic functions
- reaction to the user’s actions and digesting the input data from the device.

After the program startup (optionally, Initial Scenario is performed), the
control is reserved completely for Main thread. It waits for actions from
user (clicking on buttons or menu items etc.) in reply to which it

e sends some commands directly to the device (i.e. driver). As example
- 7Open Door”, ”Turn HV On”, etc., and waits until these commands
are completed.

e starts the different modes or their sequences (scenarii) setting the
mode switch to the needed mode or to the first mode of scenario. This
switch (squares with slash in the figure) is passed by the ”Scenario”
thread control when the ”Main” thread unlocks the respective mutex
in it. Then the ”Scenario” thread selects the mode in a switch and
calls one of the respective mode procedures (implemented in device
module). This algorithm (see next Figure 2) initializes itself, sends
some commands to the device to start the accumulation of data and
waits until these data are ready in the mutex lock point (black box in
each mode algorithm rectangle).

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

1.3 Justification of the threads use and their interaction 4

MASS device +
driver

count data

T

elementary glementary commands ‘
command

]
N wait/read
data

data

readly

@ @
GUI buttons run mode/
\%ﬂo ﬁ
N
[|
yes
Nno

GUI thread (main)

JiBl

Data thread (read data)

modes

Scenario thread (modes)

Figure 1: Interaction of the three TURBINA threads shown as three large
marked rectangles. Black boxes represent mutexes which are unlocked by
incoming arrows from other threads and locked by internal cycles of threads.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

1.4 The TURBINA modules and their dependencies

mode settings
\ commands to device

I I

sat,— |

wait base-time data

l

reduce, store & display
base-time data

l

modify settings
(if needed)

l

end of accum.time:
reduce, store & display
average data

|

message to external:
modeis over

Figure 2: Block-scheme of a mode algorithm. The cycle is over the base-
time and the loops are repeated approximately (accumulation time)/(base
time) times. So, the scheme describes one full accumulation time actions.

When the acquired data arrive in the driver FIFO from the device modules
(thick arrow from the device box to "Data” thread on the Fig.1), they
are sorted by MASS channel buffers in "Data” thread and, when ready,
this thread unlocks the mutex which has stopped the mode in ”Scenario”
thread. The data are reduced (see Fig.2), displayed, stored etc. and thus
one accumulation time cycle is over.

Then the control goes to the point where the ”next mode” is selected and
set in a mode switch 4f the scenario was started. If it was a single mode call
from the ”Main” thread, the control stops at the mutex lock point until the
next call from the ”Main” thread.

1.4 The TURBINA modules and their dependencies

From the point of view of programming, the program consists of a number
of modules (compiled independently and linked later in one executable file).

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

1.4 The TURBINA modules and their dependencies 6

The scheme of their mutual relations is presented in Fig.3 where arrows show
the "inclusion way”: an arrow going from module 1 to module 2 means that
module 1 is used by (or #include-d in) the module 2.

=
/ \

onceres) |
Cnamves |

cfgdialog

widgets

viewstar

errors
nrutil

L L N LS I I N L L L R L L LI N L L L
<access><trberror>< tools)@essages) (Colorb @ames}f(trbconst}(cfg ><tree><trbtime>

Figure 3: The tree of module dependencies in TURBINA. Light grey/yellow
boxes - scientific modules, grey/cyan boxes - GUI modules.

References

1. UNIX System Programming using C++, T. Chan, Prentice Hall PTR,
NJ, 1997

2. Linux device drivers. A. Rubini, O’Reilly, 1998

3. The C++ Programming Language. B. Stroustrup. Third Edition.
Addison-Wesley, 2001

4. Programming with Qt. M.K.Dalheimer. O’Reilly, 1999 [obsolete edition

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

2 Part I. Namespace Index

used for principles study only]

5. HTML reference manual pages for Qt programming at {\tt
http://doc.trolltech.com}

2 Part I. Namespace Index

2.1 Part I. Namespace List

Here is a list of all documented namespaces with brief descriptions:

ioc (Declarations of the channel count type and counts I/O
operations) 11

rdm (Reading and parsing the mass-file lines) 13

sum (Handling the scientific measurement results for the
night-time summary and graphics) 18

3 Part 1. Hierarchical Index

3.1 Part I. Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AdjustDialog
BackCorrectionDialog
BlockCounter
BranchDialog
CenterCorrectionDialog
CenteringDialog
CFGBranch
CFGDialog

CFGLeaf

CFGTree
CommentDialog
Counter

CountThread
DataThread
DegreeValidator
DeviceState
DeviceTree
DevManager

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

3.1 Part I. Class Hierarchy

DigitalClock
DisplayData
ErrorBase
CFGError
DeviceError
LoadError
ExportTable
ExportText
FloatValidator
ForSlot
GraphData
GraphSet
GraphWindow
HelpView
HVDialog
[llumDialog
InfoExport
IntValidator
JKQComboBox
JKQLineEdit
JKQListViewltem
Light
LightDialog
Link
MainTree
Motor
MyWidget
OutControl
sum::param-_t
PointDouble
Power
Progress
QJKMainView
QJKPushButton
QJKTable
Scale
SelectStarDialog
ShowSet
ShowStarDialog
Star
StarInfo
StateExport
Subltem
TalkDialog

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

4 Part I. File Index

Time
TimeValidator
ViewStarList

4 Part I. File Index

4.1 Part I. File List

Here is a list of all documented files with brief descriptions:

access.h (Deals with access rights to files, fields of CFG etc.,
determines the current user status: ”mass-root” (expert)
or not (simple user)) 24

cfg.h (Tools for accessing to CFG tree in memory: search,
validation, I/0) 25

cfgdialog.h (Module for implemention of the GUI-dialogs of
a user with a tree of CFG parameters) 25

cnt2asc.cpp (Reading the M ASS binary count-file *.cnt and
converting the count data into an ASCII table. A stan-
dalone program) 26

color.h (The list of the color names (character constants)
reserved in Qt (17 colors)) 28

counter.h (Implementation of interaction (command calls
and replies from modules, their current data and status
keeping, etc.) with photometric modules) 28

decldevicetree.h (The ”body” of tree from devicetree.h mod-
ule: the list of CFG parameters itself) 28

declmaintree.h (The ”body” of tree from maintree.h module:
the list of CFG parameters itself) 29

device.h (High-level interaction with the device bearing the
manager functions which implement the algorithms of
modes) 29

devicetree.h (Keeps (statically) in memory the tree (param-
eter values) of the CFG stored in device.cfg) 30

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

4.1 Part I. File List

10

exchange.h (Low-level exchange implementation of the pro-
gram with the device driver) 30

graph.h (Supports the output of the measurement results in
the graphic window) 31

iocount.h (Input/Output of the individual photon counts in
a binary ”count-file”) 32

light.h (Implementation of interaction (command calls and
replies from modules, their current data and status keep-
ing, etc.) with buttons and control/illumination LEDs
module) 34

main.cpp (Initiates the program execution) 34

maintree.h (Keeps (statically) in memory the tree (parame-
ter values) of the CFG stored in turbina.cfg) 36

messages.h (GUI-output of the software messages to the
screen) 36

motor.h (Implementation of interaction (command calls and
replies from modules, their current data and status keep-
ing, etc.) with stepper motor of the aperture wheel) 36

mywidget.h (GUI-implementation of the program main win-
dow: menu structure, status bars etc. linking together all
the components provided by widgets.h) 37

names.h (Reserved string constants: file names, paths, ex-
tentions and the numeric formats for data display on the
screen) 38

outcontrol.h (Manipulation of the output in the main results
and graphic results windows) 38

power.h (Implementation of interaction (command calls and
replies from modules, their current data and status keep-
ing, etc.) with high voltage supply module) 39

readmass.h (Reading the content of the mass-file for Play-
back function and CFG parameters last-written values) 39

star.h (Reads the star list and interprets the star parameters
when needed) 41

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5 Part I. Namespace Documentation

summary.h (Collection of scintillation indices and atmo-
spheric parameters results from scientific modules for
their graphic representation and the summary-file han-
dling) 42

tools.h (A variety of functions and tools needed for all other
modules) 44

trbconst.h (Commonly used constants (e.g. MM2CM, SEC _-
IN_ DAY etc.)) 45

trberror.h (The declarations of C++ exception classes which
may be invoked from some points in star.h, device.h etc) 45

trbexport.h (The class is presented with static fields which
serve for exchange of data between the Scenario thread
and Main-thread of the program) 46

trbtime.h (Support of date/time-related tasks. Implements
namespace trb_tm and site stellar time, coordinates, UT
etc) 46

tree.h (Class implementing the CFG tree organization: prin-
ciples of its building, reading, searching info etc) 47

unroll.h (Converts the scenario formula in the sequence of
mode symbols) 48

viewstar.h (Shows the list of stars with help of GUI and lets
user to choose the star from this list) 49

widgets.h (Implementation of the different components the
main window of TURBINA collected together by mywid-
get.h) 50

5 Part I. Namespace Documentation
5.1 ioc Namespace Reference

Declarations of the channel count type and counts I/O operations.

Functions

e long write (FILE xfcnt, count_t xxbuffer, int buflen, int nbuf)

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 ioc Namespace Reference

12

Write the channel count series to disk.

e void read (FILE xfcnt, count_t xxbuffer, int *buflen, int *xnbuf, long
addr)

Read the channel count series from disk.

5.1.1 Function Documentation

5.1.1.1 long ioc::write (FILE x fent, count_t *x buffer, int bufilen,
int nbuy)

Parameters:
fent structure of the opened binary file of counts

buffer array of nbuf pointers to channel count buffers
buflen length of the channel buffer in units of counts (not bytes!)

nbuf Number of buffers (e.g. number of active channels)

Returns:
Starting position in file (in bytes from beginning) where the counts were
written or (-1) on error

The function uses the fseek() to set the file position to the end of file (where
it is, normally, set already), gets this current position to be returned on
success, and writes sequentially all nbuf channel buffers to disk. Before
writing of each i-th channel buffer (i=0..nbuf-1), the descriptor is written
consisting of two numbers: {nbuf-i, buflen }.

After writing, the file pointer is retained at the next position after the last
written data number.

5.1.1.2 void ioc::read (FILE x fent, count_t ** bujffer, int x buflen,
int x nbuf, long addr)

Parameters:
fent structure of the opened binary file of counts

buffer array of nbuf pointers to channel count buffers

buflen On enter: Maximal length of the channel buffer in units of
counts (not bytes!) On exit: Actual length of channel buffers

nbuf On enter: Expected number of buffers (e.g. number of active
channels) On exit: Encountered number of buffers (error if differs
from nbuf on enter)

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 rdm Namespace Reference

13

addr Starting position in file (in bytes from beginning) where the
counts should be read from.

The address is checked to be only the multiple of the size of the count_t
type.
The function uses the fseek() to set the file position to the given addr, and

reads sequentially nbuf records each consisting of a two-number descriptor
plus a count buffer read into the respective buffer[i] (i=0..nbuf-1).

Each of descriptors is checked to be consistent with the parameters nbuf and
buflen:

e the first number is checked to be equal to nbuf-i
e the second number must not exceed the parameter buflen value
¢ the second number must be equal for all nbuf records

If one of these conditions are not justified, the error with the code nr:: EROFL
is returned and the further reading stops. The error nr::ERFIO is returned
when not all the counts are successfully read or addr is not fseek()-able.

The content of a first descriptor is returned in place-holders nbuf and buflen
in any case, either on error or on success.

After reading, the file pointer is retained at the next position after the last
data number read.

5.2 rdm Namespace Reference

Reading and parsing the mass-file lines.

Functions

char readline (FILE mf)

Read the next line from the mass-file stream mf.

char gettype ()
Return the last line prefix.

bool isheader ()

Disentangle the comment- and header-type lines.

long getstartpos ()

Return starting position of last-read record.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 rdm Namespace Reference

14

e double getut (int *UTh, int *UTm=0, int *UTs=0)

Return the parsed UT moment as hours, minutes and seconds.

e string getut ()
Return the string-type UT moment (unparsed).

e string getname ()

Return the parameter name or started mode name or star catalogue ID.

e string getvalue (const string pname="")

Return the value of parameter or star parameters or line content.

e long getaddr ()
Return the count-file address for the last read base-time results line (i’,%’-

type).

277

¢ int add2map (const string pname="" const string pvalue="")

Add the parameter and its value to the map filled with grabparams()
(p.17).

e int grabparams (FILE xmf)

Read the whole mass-file to collect the parameter values from the preamble-
type lines.

Variables

e const long NOADDR = -1

5.2.1 Function Documentation

5.2.1.1 char rdm::readline (FILE * mf)

Parameters:
mjf the stream pointer of an opened mass-file

Returns:
line prefix or \0 for failed reading/parsing or if EOF

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 rdm Namespace Reference

Reading the line and parsing it if possible: for line types 'P’,’M’,’i’,’j’,’O’
. No action is performed if null-file mf is supplied (segm.fault-protected).

Before parsing the line, the carriage-return character is removed from the
line.

The first character of line determines the line ¢ype and thus the returned
value (see also gettype() (p.15)).

For any line but that of header-type the UT is extracted from the second
field and can be obtained with getut() (p. 16).

The name (returned by getname() (p.16)) is extracted for 'P’-, M’-lines
and ’O’-lines starting after the last space character after UT record:

e 'P’: name is ended before the (first) '=" character (after this =’ the
value of the parameter starts) and turned into upper-case;

e 'M’ : name of mode is ended at the end of line and turned into upper-
case;

e 'O’ : name (HR-number) lasts till the end of line. Note that the length

of the HR-record depends on the numeric value of HR (e.g. 3 chars
for HR=999).

The value (returned by getvalue() (p.16)) is extracted for 'P’-lines (after
the first ’="-character) and for non-parsed and comment-lines.

The address (see getaddr() (p.14)) is converted from ”@...” substrings of
the mass-file line or set to rdm::NOADDR (p. 18) if not found.

5.2.1.2 char rdm::gettype ()

Returns:
prefix of the last successively read/parsed line or \0 if no lines were read

5.2.1.3 bool rdm::isheader ()
Returns:

Header-line flag: true for lines started as '#x’ and false for any other
line type (comment or non-comment)

5.2.1.4 long rdm::getstartpos ()

Returns:
file position before reading last line

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 rdm Namespace Reference 16

File position is saved before each readline() (p. 14); thus, with help of this
function, one line may be read twice:

rdm: :readline(f) ; // some line read
fseek(f, rdm::getstartpos(), SEEK_SET);
rdm: :readline(f) ; // the same line again

5.2.1.5 double rdm::getut (int « UTh, int x UTm = 0, int x UTs

Parameters:
UTh Resulted UT hour (may be set zero if no UTh needed)

UTm Resulted UT minute (may be left zero)
UTs Resulted UT second (may be left zero)

Returns:
Fractional UT hour or -1 on error of UT parsing

5.2.1.6 string rdm::getut ()

Returns:
UT-string

5.2.1.7 string rdm::getname ()

Returns:
Name of parameter as Section[/SubSection[/SubSubSection]] or star’s
catalogue ID (first field after UT in ’O’-lines, normally HR) or mode
name

5.2.1.8 string rdm::getvalue (const string pname =)

Parameters:
pname parameter name in upper-case for accessing the map of pa-
rameter name/values created by grabparams() (p. 17). Empty by
default for getting the ”value” last read with readline() (p. 14).

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 rdm Namespace Reference

17

Returns:
The rest of line to the right of the first '=" for 'P’-lines or acquired
parameter name pname; of the catalogue ID for ’O’-lines or the full line
for header-type lines or the line content to the right of UT for other
non-parsed lines

This function is of the dual use. First, it returns the value for a mass-file
line which was just read with readline() (p. 14) (see Returns description).
Second, it returns the value associated with the provided parameter name
pname taken from the parameters map created by grabparams() (p.17).

5.2.1.9 int rdm::add2map (const string pname = ””, const string
pvalue =)

Parameters:
pname parameter name in upper-case for adding in the map of pa-
rameter name/values created by grabparams() (p.17). Empty
by default for simply getting the size of the map.

pvalue parameter pname value. May be empty if, say, no value is
associated with pname.

Returns:
The size of the parameters map after adding the parameter pname.

This function simply assigns the value pvalue (if not empty/defaulted) to
the map key pname (i.e., creates a new entry pname if not existent before
and associates it with the (new) value pvalue). Returned is the size() of the
parameters map.

5.2.1.10 int rdm::grabparams (FILE x my)

Parameters:
mjf the stream pointer of an opened mass-file

Returns:
Number of preamble-type lines encountered (not of parameters stored
in map - it is less if the same parameter was encountered, say, twice).

The utility first sets the file position at its origin and then collects all the
preamble-type line contents in an associative array (map). The values of
parameters, if encountered repetitively are thus overwritten and upon the
end of reading represent the last-written values.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.3 sum Namespace Reference 18

After the function finishes its job, the file pointer is left at the end of file.
The parameter values may be acquired with rdm::getvalue() (p.16) with
an exact parameter name in upper-case as an argument.

If null mf is supplied, the accumulated map of parameter-value pairs is only
emptied.

Note:
grabparams() (p.17) uses the function readline() (p.14) for read-
ing the mass-file. So, the content of the variables returned by get-
type() (p.15), getvalue() (p.16) etc. is modified compared to pre-
grabparams() (p. 17) state.

5.2.2 Variable Documentation

5.2.2.1 const long rdm::NOADDR = -1

Invalid count-file address, returned when not found or failed to convert

5.3 sum Namespace Reference

Handling the scientific measurement results for the night-time summary and
graphics.

Compounds

e struct sum::param_t

Enumerations

e enum partype
e enum reftype { FIRSTMEAN, LASTMEAN, SEASONMEAN

}

Functions

e const char * partype_name (partype t)

Get "standard” name for a parameter type.

e int createset (int nchan)

Create the set of series with properly assigned parameters.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 sum Namespace Reference 19

e void init (const char xsumfile, long date, int nchan, const char
«dumpfile=0)

Read the summary file, make references and initialize the series storages.

e void add (double UTh, double mag, double airmass, bool isgen)

Add the results of the last accumulation time in the series tails.

e double getref (const string &pname, sum::reftype rtype)

Get the reference value for a given parameter.

e const double x getdata (const string &pname, int nres=-1)

Get the pointer to the series storage for a given parameter.

e int getn ()

Get the number of results accumulated in series storages.

e void done ()

Median average the result series and update/create the summary-file and
the dump-file.

e double massmag (double vmag, double bv, double
coleq=sum::MASSCE)

Convert the Johnson V-magnitude into MASS magnitude.

Variables

e const double NODATA =0
e const double MASSCE = 0.5905

5.3.1 Enumeration Type Documentation

5.3.1.1 enum sum::partype

Types of data stored continuously during the measurements; not saved in a
summary-file are the last items starting from NCN2

5.3.1.2 enum sum::reftype

Types of the reference information available:

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 sum Namespace Reference

20

Enumeration values:
FIRSTMEAN The value of the parameter taken from the first record
in the summary-file (e.g. manually written site averages)

LASTMEAN The value of the parameter taken from the last record
in the summary-file

SEASONMEAN The mean value of the parameter through all the
lines in the summary-file (zero-date lines, e.g. with a word instead
of date, are averaged)

5.3.2 Function Documentation

5.3.2.1 int sum::createset (int nchan) [inline]

Parameters:
nchan number of MASS channels

Returns:
0 on success, nr::erget() on error (nr:nrerror() is set)

5.3.2.2 void sum::init (const char x sumfile, long date, int nchan,
const char x dumpfile = 0)

Parameters:
sumfile MASS summary file name

date Current date represented as DDMMYY
nchan MASS channels number

dumpfile binary file name to restore the series content from

The sumfile is read (if exists) with checking the compatibility of its header
line with the data set expected. If not readable, the message is returned
with error code nr::ERFIO. If the header is not compatible, the file content
is rejected and no reference is made for parameters; error message is set with

code nr::ERNOD.

If file is Ok, all the result lines are read and the mean value of all columns is
computed as a Season mean values. The first and last line contents are saved
separately. These kinds of the reference data are available with getref()
(p.21). First results line does not participate in averaging if it contains
the invalid (zero) date. Thus, the manual provision of a first line for the
sum:FIRSTMEAN (p. 20) reference type (e.g. the current or comparison

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.3 sum Namespace Reference

site averages) must be done with such a zero date to avoid biasing of a real
season statistics.

The necessary space is allocated for the result series to be accumulated with
add() (p.21). If a dumpfile is supplied, the attempt to read this binary file
is made. If successful and the date specified in the file descriptor coincides
with the date, the series storages are filled from the file and will thus contain
the data from the previous runs of TURBINA in the same night, to be
graphically displayed using getdata() (p.22). If not, the series are empty
on startup; their starting length (returned by getn() (p.23)) is zero.

5.3.2.3 void sum::add (double UTh, double mag, double airmass,
bool isgen)

Parameters:
UTh Fractional UT hour

mag MASS-band magnitude of a target star (for the flux conversion,
see massmag() (p.24))

airmass airmass of a target star (for summary writing only)

isgen Generalized mode flag (availability of the shifted pupil results)

The function adds all relevant parameter values to the tails of the result se-
ries using sc::getavgflux(), sc::getavgidx(), atm::getval(), atm::getzcn2() and
atm::getcn2(). Non-computed parameters are saved as sum::NODATA
(p.24) (e.g. shifted indices in the Normal mode).

The magnitude mag is used to recompute the stellar flux for the zero- magni-
tude star. This magnitude is assumed to be converted into the MASS instru-
mental magnitude using the stellar B-V color index and the color equation
of the MASS photometric system. It can be done with massmag() (p. 24).
The aim is to trace the atmospheric transparency of the site (having also the
median airmass in the same summary-file) in parallel with the turbulence
study.

The shifted-pupil stellar fluxes are not accumulated and not saved in a sum-
mary file.

5.3.2.4 double sum::getref (const string & pname, sum::reftype
rtype)

Parameters:
pname The parameter name

rtype Type of a reference: sum:FIRSTMEAN (p.20),
sum::LASTMEAN (p. 20), sum::SEASONMEAN (p. 20)

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 sum Namespace Reference

22

Returns:
Reference value, or sum::NODATA (p.24) if no reference is available

The name pname, if supplied as is for the first time, is parsed to get know
which of scintillation or atmopsheric parameters it refers to. If successfully
parsed, the reference value of a specified type rtype is returned and the result
of parsing (address of a reference storage) is stored in an associative array.

The reserved names are

e FA..FD - fluxes in channels A..D converted to zero magnitude
(FLUX_# are also understood)

e ST A..SID,SI_AB..SI_CD - scintillation indices in channels and com-
binations (differential indices). Alternative names like DSI_AB may
also be used

e DESI_A..DESID - differential exposure indices

e SI_AS,SI BS,(D)SI_ABS,DESI_AS - the selected indices set obtained
with a pupil shift in a Generalized mode

e SEE,FSEE,HEFF,FHEFF,ISOPL,MO,M2,TAU - integral atmospheric pa-
rameters (equivalent of atm::ordint enumeration). The names are all
in upper case and case-sensitive.

The reference value is not available for the airmass, UT, and for the Cn2
profile data (Cn2 is not stored in a summary-file).

On error (non-identified parameter), the error nr::ERNOD is set and the
value sum::NODATA (p.24) is returned.

5.3.2.5 const double * sum::getdata (const string & pname, int
nres = -1)

Parameters:
pname The parameter name

nres The result index for pname== ZCN2 and CN2; latest result is
returned by default

Returns:
pointer to the result series or to nres-th (z)cn2[] array for pname==
ZCN2 and CN2

The name of the parameter is parsed as described for getref() (p.21) and,
if successfully done, the pointer to respective series storage is returned. In
addition to the list of parameter names in getref() (p.21), the following
names are allowed:

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.3 sum Namespace Reference 23

UT - the fractional UT for the graphics abscissa values

NCN2 - the number of restored turbulence profile layers

ZCN2 - the turbulence layer altitudes for the result #nres.

CN2 - the turbulence layer strengths for the result #nres.

Note, that unlike other parameters, for pname== \c[Z]CN2 the layer al-
titudes and profile strengths arrays are returned, for the single (last by
default) result, NOT the array of all the results obtained during the night.

On error (non-identified parameter), the error nr::ERNOD is set and the
pointer to the UT array is returned.

5.3.2.6 int sum::getn ()

Returns:
Current length of series (equal to all, taken from UT series)

5.3.2.7 void sum::done ()

If the summary file sumfile, specified in init() (p.20) call, does not exist,
create it with a header-line with names of parameters and leading comment-
char ’#’. Then, if some scientific measurements were performed, compute
the night-time median parameters from the series and add a new line in a
summary-file. This line is written after the last line in a file, or, if the line
with the same date is found, on the place of this obsolete record.

If a ”dump-file” name dumpfile was supplied to init() (p.20), the series are
(over)written in some binary format in this file. Before quitting, the series
storages are released.

The format of a dump-file is following. This binary file consists of a series of
records of double-type numbers, except for the first record. The first record
is a descriptor; it consists of four long integer numbers

<date DDMMYY> <Number_of_series> <length_of_each_series> <maximal N_layers>

Series include the one for fractional UT, one for airmass etc. Then follow
<Number of series> records -

<parameter_(start_UT)> ... <parameter_(end_UT)>

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6 Part I. File Documentation

24

i.e. the contents of the series storages (arrays), each of the length <length -
of _each_series>.

Thus, all the internally stored information of the module is written in the
dump-file. This format is not fixed (not ”official”) since the dump-file is a
"black-box” devoted for internal use in the SUMMARY module only.

5.3.2.8 double massmag (double vmag, double bv, double coleq =
sum::MASSCE) [inline]

Parameters:
vmag V-band magnitude

bv B-V color

coleq Linear color equation coefficient

This function converts the standard V-magnitude of a star into the MASS-
band magnitude using the linear color equation with a coefficient coleq. By
default, this coefficient is taken from the module constant sum::MASSCE
(p.24). For a star having (B-V)==0 (A0), the MASS magnitude is assumed
to be equal to V-magnitude.

5.3.3 Variable Documentation

5.3.3.1 const double sum::NODATA =0

The value reserved for the unknown parameter value. Returned on failure;
don’t enter the averaging if encountered in a set.

5.3.3.2 const double sum::MASSCE = 0.5905

MASS color equation coefficient from linear regression of a synthetic relation
Mag_{mass}-V vs (B-V)_0: Mag_{mass} = V + MASSCE x (B-V)

6 Part I. File Documentation

6.1 access.h File Reference

Deals with access rights to files, fields of CFG etc., determines the current
user status: “mass-root” (expert) or not (simple user).

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.2 cfg.h File Reference

6.1.1 Detailed Description

MASS project: TURBINA module file header file for access.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.2 cfg.h File Reference

Tools for accessing to CFG tree in memory: search, validation, I/0.
#include <stdio.h>

#include <gstring.h>

#include "names.h"

#include "tree.h"

6.2.1 Detailed Description

MASS project: TURBINA module file header file for cfg.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.3 cfgdialog.h File Reference

Module for implemention of the GUI-dialogs of a user with a tree of CFG
parameters.

#include <qdialog.h>
#include <qpushbutton.h>
#include <qgpopupmenu.h>
#include <qlabel.h>
#include <qglineedit.h>

#include <gstring.h>

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.4 cnt2asc.cpp File Reference

#include <qlayout.h>
#include <qgarray.h>
#include <qvalidator.h>
#include <qcombobox.h>

#include "maintree.h"

Compounds

e class FloatValidator
e class IntValidator

e class TimeValidator
e class DegreeValidator
e class Subltem

e class JKQLineEdit

e class JKQComboBox
e class BranchDialog

e class CFGDialog

6.3.1 Detailed Description

MASS project: TURBINA module file header file for cfgdialog.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.4 cnt2asc.cpp File Reference

Reading the MASS binary count-file x.cnt and converting the count data
into an ASCII table. A standalone program.

#include "iocount.h"

#include "nrutil.h"

#include <iostream>

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.4 cnt2asc.cpp File Reference

6.4.1 Detailed Description
Usage

./cnt2asc <MASS_count_file_name> [address [Nbasetime]]
or
./cnt2asc [-h] to get a short help

The program opens the MASS count_file_name and seeks the position ad-
dress. By default, the beginning of file is sought. Then the Nbasetime records
(1 by default) are read and printed in standard output as an ASCII table
with the number of columns equal to the number of channel buffers (active
MASS channels when writing the count-file) and row number equal to the
number of counts received in each channel during Nbasetime base times.

The address is accepted either in decimal or in hexadecimal format (preceded
with 70x” in latter case). It is normally given in the last field of the base-time
scintillation index record (format of this address is "@<hex_offset>"). This
address is converted into the long integer number and used as an address
for ioc::read() (p.12) command to read data from the count-file.

It is assumed that the count-file *.cnt is written with the same or compatible
version of iocount.cpp module as used here.

The number of count buffers and the length of buffers (checked to be the
same for all buffers of the same base-time record) are read from the descrip-
tor to which the addr points. The constraint for several base-time records
read in one turn (Nbasetime>1) is that they all have the same buffers’ num-
ber and the length of any buffer must not exceed the one of the first buffer. If
either of these conditions are violated, the reading is stopped with a message
to stderr.

Returns:
On success, the long integer address of the next base-time record is
returned; on error -1 is returned and the message (normally, from the
IOCOUNT module) is printed in standard error output. The change of
buffer’s number or length is not accounted as error; the address of this
differing record is returned.

Compilation:

g++ -Wall -o cnt2asc cnt2asc.cpp nrutil.o iocount.o

Author:
N.Shatsky (SAI,2002)

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.5 color.h File Reference 28

Version:
1.0

6.5 color.h File Reference
The list of the color names (character constants) reserved in Qt (17 colors).

6.5.1 Detailed Description

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.6 counter.h File Reference

Implementation of interaction (command calls and replies from modules,
their current data and status keeping, etc.) with photometric modules.

#include <qgarray.h>

#include "iocount.h"

Compounds

e class BlockCounter
e class Counter

6.6.1 Detailed Description
MASS project: TURBINA module file header file for counter.cpp

Author:
0. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.7 decldevicetree.h File Reference

The "body” of tree from devicetree.h module: the list of CFG parameters
itself.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.8 declmaintree.h File Reference

29

6.7.1 Detailed Description

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.8 declmaintree.h File Reference

The "body” of tree from maintree.h module: the list of CFG parameters
itself.

6.8.1 Detailed Description

Author:
0. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.9 device.h File Reference

High-level interaction with the device bearing the manager functions which
implement the algorithms of modes.

#include <qgobject.h>
#include "exchange.h"
#include "counter.h"
#include "light.h"
#include "motor.h"
#include "power.h"
#include "scan.hxx"

#include "trbtime.h"

Compounds

¢ class PointDouble
e class DevManager

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.10 devicetree.h File Reference

30

6.9.1 Detailed Description

MASS project: TURBINA module file header file for device.cpp

The algorithms represent the sequences of actions which implement the one
accumulation-time cycle of measurements by means provided by counter.h,
motor.h, power.h and light.h.

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.10 devicetree.h File Reference

Keeps (statically) in memory the tree (parameter values) of the CFG stored
in device.cfg.

#include "tree.h"

#include "decldevicetree.h"

Compounds

e class DeviceTree

6.10.1 Detailed Description
MASS project: TURBINA module file header file for devicetree.cpp

Author:
0. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.11 exchange.h File Reference

Low-level exchange implementation of the program with the device driver.
#include "gstring.h"
#include "counter.h"

#include "trbconst.h"

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.12 graph.h File Reference

31

Namespaces

e namespace exch

6.11.1 Detailed Description

MASS project: TURBINA module file header file for exchange.cpp

Implements the commands sending, data and signals receiving from the
device via the driver inserted into OS kernel.

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.12 graph.h File Reference

Supports the output of the measurement results in the graphic window.
#include <qgpainter.h>

#include <qgpixmap.h>

#include <qwidget.h>

#include "outcontrol.h"

Compounds

e struct Scale
e class GraphWindow

6.12.1 Detailed Description

MASS project: TURBINA module file header file for graph.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.13 iocount.h File Reference

6.13 iocount.h File Reference

Input/Output of the individual photon counts in a binary ”count-file”.

#include <stdint.h>
#include <stdio.h>

Namespaces

e namespace ioc

Typedefs

e typedef uint16_t count_t

Variables

e const count_t max_count_t = (count_t)(-1)

6.13.1 Detailed Description

MASS project: header file for iocount.cpp

This module implements the Input/Output operations with disk for saving
and restoring the counts in count buffers of MASS detectors. The aim is
to allow for saving the night-time count series in a binary file and for the
off-line playback the recorded series of input channel counts to repeat their
processing and display the output parameters. Alternatively, the counts
may be read and processed externally.

The counts from all channels of the device are written in a binary format
by the utility ioc::write() (p.12) which returns the start-position address
of the written series. This address is saved somewhere else (e.g. in main
MASS output file). Afterwards, for reading the count-file, the address is fed
to ioc::read() (p. 12) which restores the counts in the channel buffers. After
this, the processing may go on as if the count data were just received from
counters.

The binary count file should be opened with an attribute "a+b” and closed
upon completion of reading/writing externally. If problem occurs (bad input
address for ioc::read() (p.12) or low-level I/O problem), the error is set by
these utilities to be detected by nr::erget() and nr::ermessage().

The buffers are made of numbers of the type count_t which is defined in
this module. All the bytes of count_t numbers are written to the disk. Thus,

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.13 iocount.h File Reference

the two-byte unsigned or signed integers are seemed to be best suited for
MASS, for which we do in this module:

#include <stdint.h> // or <sys/types.h>

typedef count_t uintl6_t ; // or intl6_t

Normally, the buffers are written by ioc::write() (p.12) or read by
ioc::read() (p.12) simultaneously if they contain the signal of the same
time interval of acquisition (base-time). Thus, for 4-channel MASS device,
four buffers are written/read in one time. Each these count buffers is pre-
ceded by a descriptor consisting of two numbers of the same type count_t.

The first number is a number of count buffers which are written starting
from the current position and which belong to the same base-time. This
allows to check that the buffers are synchronized in acquisition time while
reading the count file.

The second number is the length of the following buffer in counts (one should
multiply this number by the sizeof(count_t) to get length in bytes). Cur-
rently, MASS channels are forced to fill their count buffers always with equal
amount of counts.

The example of the record of one base-time of MASS with 4 channels each
having 1000 counts (binary count_t-type numbers are denoted as <..>) :

<4> <1000> <channel_1 count_1> <channel_1 count_2> ... <channel_1 count_1000>
<3> <1000> <channel_2 count_1> <channel_2 count_2> ... <channel_2 count_1000>
<2> <1000> <channel_3 count_1> <channel_3 count_2> ... <channel_3 count_1000>
<1> <1000> <channel_4 count_1> <channel_4 count_2> ... <channel_4 count_1000>

Thus, reading the first two bytes of the file or of the base-time record allows
one to get know the number of buffers written further for this base-time and
the size of (each) buffer.

Author:
N.Shatsky (kolja@sai.msu.ru)

Version:

1.1 Descriptor added for each record

6.13.2 Typedef Documentation

6.13.2.1 typedef uint1l6_t count_t
The count type will be unsigned 16-bit integer type

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.14 light.h File Reference 34

6.13.3 Variable Documentation

6.13.3.1 const count_t max_count_t = (count_t)(-1)

Maximal count_t (implementation works for unsigned integral types)

6.14 light.h File Reference

Implementation of interaction (command calls and replies from modules,
their current data and status keeping, etc.) with buttons and con-
trol/illumination LEDs module.

#include <qgstring.h>

Compounds

e class Light

6.14.1 Detailed Description

MASS project: TURBINA module file header file for light.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.15 main.cpp File Reference

Initiates the program execution.
#include <qthread.h>
#include <qapplication.h>
#include <gfont.h>
#include <qdatetime.h>
#include "exchange.h"
#include '"names.h"
#include "device.h"

#include "cfg.h"

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.15 main.cpp File Reference

35

#include "trbtime.h"
#include "mywidget.h"
#include "maintree.h"
#include "devicetree.h"
#include "graph.h"
#include "trbexport.h"
#include "access.h"
#include "outcontrol.h"
Compounds

e class DataThread
e class CountThread

6.15.1

MASS project: TURBINA main file

This is a top-level module of TURBINA program, a starting point of a
program where the following functions are executed.

Detailed Description

Reservation of static variables for trbexport.h,

start of CFG files reading into the trees in memory,

start the ”Scenario” and ”Data” threads,

initialize the device (if turbina.cfg contains "Yes” in
Operations/Common/WithDevice),

create the main and graphic windows, load the module constants,

If Initscenario is activated in CFG, start this scenario in the ” Scenario”
thread (all the other similar starts are made via GUI).

Since many of the class constructors (from other modules) are (implicitly)
started here, on the stage of the program startup all the checks of consistency
are done (e.g. existence and validity of weight function file for all stars in

the list, etc.).

Author:

O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.16 maintree.h File Reference 36

6.16 maintree.h File Reference

Keeps (statically) in memory the tree (parameter values) of the CFG stored
in turbina.cfg.

#include "tree.h"

#include "declmaintree.h"

Compounds

e class MainTree

6.16.1 Detailed Description
MASS project: TURBINA module file header file for maintree.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.17 messages.h File Reference

GUI-output of the software messages to the screen.

#include <gstring.h>

6.17.1 Detailed Description

MASS project: TURBINA module file header file for messages.cpp

Author:
0. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.18 motor.h File Reference

Implementation of interaction (command calls and replies from modules,
their current data and status keeping, etc.) with stepper motor of the aper-
ture wheel.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.19 mywidget.h File Reference 37

#include <qgstring.h>

Compounds

e class Motor

6.18.1 Detailed Description

MASS project: TURBINA module file header file for motor.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.19 mywidget.h File Reference

GUI-implementation of the program main window: menu structure, status
bars etc. linking together all the components provided by widgets.h.
#include <gmainwindow.h>

#include <qtoolbar.h>

#include <qgbuttongroup.h>

#include <qgpopupmenu.h>

#include <gstring.h>

#include <qlabel.h>

#include <qtoolbutton.h>

#include <qiconset.h>

#include <gprogressbar.h>

#include <qgarray.h>

#include "widgets.h"

#include "cfgdialog.h"

Compounds

e class MyWidget

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.20 mnames.h File Reference

6.19.1 Detailed Description
MASS project: TURBINA module file header file for mywidget.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.20 names.h File Reference

Reserved string constants: file names, paths, extentions and the numeric
formats for data display on the screen.

6.20.1 Detailed Description

Note that the formats of data which are stored in the mass-file are defined
in scientific modules of TURBINA.

Author:
0. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.21 outcontrol.h File Reference

Manipulation of the output in the main results and graphic results windows.
#include <qobject.h>

#include <gstring.h>

#include <qcolor.h>

#include "summary.h"

Compounds

e class GraphSet

e class GraphData

e class ShowSet

e class DisplayData
e class OutControl

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.22 power.h File Reference 39

6.21.1 Detailed Description

MASS project: TURBINA module file header file for outcontrol.cpp

The module "tells” the other modules which data should be displayed and
which should be hidden depending on the (current) state of CFG parameters
which are listed in the Display section of turbina.cfg.

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.22 power.h File Reference

Implementation of interaction (command calls and replies from modules,
their current data and status keeping, etc.) with high voltage supply module.

#include <gstring.h>

Compounds

e class Power

6.22.1 Detailed Description

MASS project: TURBINA module file header file for power.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.23 readmass.h File Reference

Reading the content of the mass-file for Playback function and CFG param-
eters last-written values.

#include <stdio.h>

#include <string>

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.23 readmass.h File Reference 40

Namespaces

e namespace rdm

6.23.1 Detailed Description

This module implements reading and parsing of lines of a mass-file. This is
done in course of following tasks:

e comparison of the configuration file (CFG) parameters written pre-
viously in a current mass-file with that read from the CFG (repeti-
tive start of TURBINA in the same night). Deals with the so-called
preamble-type lines ("P’-lines).

e the 7playback” of an old mass-file (normally named as
YYMMDD.mass.in) for re-reducing of the previous nights data.
Here, apart from the 'P’-lines, we take care mostly of the base-
time originated lines (as that with prefixes 'i’)’j’) and new modes
declarations ("M’-lines). Also, the object info lines (O’) are parsed.

Usage
Reading the single line:

The function rdm::readline() (p. 14) reads and (possibly) parses the (next)
line from the opened stream of the mass-file. It returns the line prefix which
denotes the type of line and parsing results. Some line type are parsed and
the rest are simply provided ”as is” by rdm::getvalue() (p. 16) (see below).

The parsed data are available with following functions:

e rdm::gettype() (p.15) returns the line prefix just as
rdm::readline() (p.14) does, for all types, naturally;

e rdm::isheader() (p.15) tells for the comment-type lines (prefix '#’
) whether the line is a header-line (second character is a prefix also).

e rdm::getut() (p.16) returns the UT moment reference, for all types
except for header-lines (starting with '#%’ where '+’ is a prefix char-
acter);

e rdm::getname() (p.16) returns the name of parameter ("P’-type)
or started mode ("M’-type) or catalogue (HR) number of a star ("O’-
type) in upper-case;

e rdm::getvalue() (p.16) [no arguments| returns the parameter value
for 'P’-type line, or the content of the line to the right of the star
number for ’O’-type (name, coordinates etc.) or to the right of UT
reference for non-parsed lines;

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.24 star.h File Reference

139 939

e rdm::getaddr() (p.14) returns the count-file address, for ’'i’,’j’-
types;

The parsed parameters are stored in global (private) variables, and are mod-
ified solely by overwriting. This means that, for example, the count-file
address returned by rdm::getaddr() (p.14) will stay unchanged while the
lines without one are read.

Reading the whole mass-file for the parameter values set:

The function rdm::grabparams() (p.17) should be called on the opened
mass-file stream to collect the preamble-type information. The pairs of
parameter names and their associated latest assigned values are stored in
a map. Then, these latest written parameter values are available with
rdm::getvalue() (p. 16) with an argument exactly equal to the parameter
name as a key of this map (in upper-case, as returned by rdm::getname()

(p. 16)).

Note:
No error is set by this simple module to be checked as nr:erget().
The reading failures are to be traced by the return values (see e.g.
rdm::getut() (p.16))

Author:
N.Shatsky

Version:
1.0 Creation

1.1 Bugs (minor) correction, overloaded getut()

6.24 star.h File Reference

Reads the star list and interprets the star parameters when needed.
#include <qobject.h>

#include <gstring.h>

#include <qgarray.h>

#include <qdatetime.h>

#include "trbconst.h"

Compounds

e class StarInfo

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.25 summary.h File Reference 42

e class Star

6.24.1 Detailed Description

MASS project: TURBINA module file header file for star.cpp

Can read the list of target stars, to search for the file of the weight functions
corresponding to the given star SED, keeps the current star parameters and
position on sky.

Author:
0. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.25 summary.h File Reference

Collection of scintillation indices and atmospheric parameters results from
scientific modules for their graphic representation and the summary-file han-
dling.

#include <string>

Namespaces

® namespace sum

Variables

e const char SUMDLM [| =" 7

delimiter of a summary file.

6.25.1 Detailed Description

The module is aimed to collect the output results (averages over Accumula-
tion Time) of scintillation measurements and atmospheric calculations dur-
ing the night and update the so-called summary-file of MASS with their
night-time median parameters. In this file, the set of these averages is given
as a single line per program start (thus, normally, per night) with some ref-
erence and statistic supplementary information (the evening date, UT time

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.25 summary.h File Reference

span covered, number of obtained and medianed results). The format of a
summary-file is described in MASS User Guide.

An access to the result storages and references with sum::getdata() (p.22)
and sum::getref() (p.21) and while parsing the header of a summary-file in
sum::init() (p.20) is done via their character names (e.g. ”SI_A” for an A-
channel scintillation index). The relation between the names (both given in
the head-line of a summary-file and supplied as a parameter in getdata() etc.)
and the respective result structures is installed via an internal associative
map.

In addition, the results of previous nights are read from this summary-file
to have reference while graphically presenting the series of the current night
results. The continuously accumulated series of results serve both for the
end-of-night median averaging in order to update the summary file and for
providing the arrays of points for graphic representation during the night.

In the hierarchy of TURBINA modules, this module thus stays above the
scientific modules ATMOS and SCIND. It "knows” which scintillation and
atmospheric parameters to access and how to write them in file or read from
file (the same formats are used as in the mass-file).

Usage

Before starting the measurements, the module has to be initialized by
sum::init() (p.20) with a name of a summary-file and a number of the
MASS device channels. The summary-file is read (if exists) and the refer-
ence value for each parameter is stored - the ones from the first and last
summary-file lines (”First mean” and the "Last mean”) and an average
through all records in a file (”Season mean”). These reference values are ac-
cessible wit sum::getref() (p.21). Also, the "dump-file” name of accumu-
lated series may be supplied to restore the content of the series if TURBINA
was restarted in the same night.

Upon completion of each Accumulation Time of scientific measurements
(Normal or Generalized mode), the function sum::add() (p.21) has to be
invoked to add the parameters in tails of their series. After this, the series
graphics may be updated using sum::getdata() (p.22); their length are
taken from sum::getn() (p.23).

Before exit of TURBINA, the function sum::done() (p. 23) must be called.
If some scientific measurements were performed, it computes the night-
time median parameters from the series. The summary file is created with
a header line if it did not exist; the name is taken as that supplied to
sum::init() (p.20). If this is the first start in the current line, a new line
of results is added in a summary-file; if the record with the current date is
already present in the file, it is overwritten.

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.26 tools.h File Reference

44

Attention:
Since the summary-file is overwritten in case of a repetitive TURBINA
run, a loss of information is possible (cause is, e.g., overfill of a numeric
format leading to discrepant sizes of the old and new records). So, the
summary-file is better to save somewhere in the beginning of a new
night.

If a "dump-file” name was supplied to sum::init() (p.20), the series are
written in a binary format in this file. Before quitting, the series storages
are released.

Author:
N.Shatsky (kolja@sai.msu.ru)

Version:
1.0 Creation

6.26 tools.h File Reference

A variety of functions and tools needed for all other modules.
#include "trbtime.h"

Functions

e const char * getStamp (const char xprefix, Time time, const char
xext=NULL)

Return the concatenation of a character argument and QString.

6.26.1 Detailed Description

MASS project: TURBINA module file header file for tools.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.27 trbconst.h File Reference 45

6.26.2 Function Documentation

6.26.2.1 const charx getStamp (const char x prefiz, Time time,
const char x ext = NULL)

Parameters:
char leading string (normally, a single character

string string to append

Returns:
C-string as char.arg+Qstring (normally, the stamp for writing in mass-
file

6.27 trbconst.h File Reference
Commonly used constants (e.g. MM2CM, SEC_IN_DAY etc.).

6.27.1 Detailed Description

Author:
0O.Voziakova ovoz@sai.msu.ru

Version:
1.0

6.28 trberror.h File Reference

The declarations of C++ exception classes which may be invoked from some
points in star.h, device.h etc.

#include <qgstring.h>

Namespaces

e namespace trberr

Compounds

class ErrorBase

class LoadError
class CFGError
class DeviceError

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.29 trbexport.h File Reference 46

6.28.1 Detailed Description
MASS project: TURBINA module file header file for trberror.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.29 trbexport.h File Reference

The class is presented with static fields which serve for exchange of data
between the Scenario thread and Main-thread of the program.

#include <gstring.h>

Compounds

e struct DeviceState
e struct Progress

e class ExportText
e class ExportTable
e class InfoExport

e class StateExport

6.29.1 Detailed Description
MASS project: TURBINA module file header file for trbexport.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.30 trbtime.h File Reference

Support of date/time-related tasks. Implements namespace trb_tm and site
stellar time, coordinates, UT etc.

#include <qobject.h>
#include <qdatetime.h>

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.31 tree.h File Reference

47

Namespaces

e namespace trb_tm

Compounds
e class ForSlot

e class Time

6.30.1 Detailed Description

MASS project: TURBINA module file header file for trbtime.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

6.31 tree.h File Reference

Class implementing the CFG tree organization: principles of its building,
reading, searching info etc.

#include <qobject.h>
#include <qgstring.h>

Compounds

e class Link

e class CFGLeaf

e class CFGBranch
e class CFGTree

6.31.1 Detailed Description

MASS project: TURBINA module file header file for tree.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.32 unroll.h File Reference

6.32 unroll.h File Reference

Converts the scenario formula in the sequence of mode symbols.

#include <string>

Functions

e const string & unroll (const char xrec, const char xdict)

Unroll the scenario record in a string of mode symbols.

6.32.1 Detailed Description

MASS project: header file for unroll.cpp

The module implements the text parser for "unrolling” the MASS scenario
records. The record is the string where the different modes follow after each
other as "A+B” and different sequences of modes of an arbitrary length
are repeated a certain amount of times as ”20x(A+B)”. The idea of imple-
mentation of this module comes from the ”calculator” program by Bjarne
Stroustrup (see ”Jazyk Programmirovanija C++”, 3rd edition, Moscow, Bi-
nom, 2001, p. 147).

6.32.2 Function Documentation

6.32.2.1 const string& unroll (const char x rec, const char x dict)

Parameters:
rec scenario record

dict "dictionary”: a list of allowed mode symbols to reject the erro-
neous input. Case sensitive.

Returns:

string which is an exact sequence in which the planned modes will be
started

The allowed operators are

e "+7 addition for adding the modes or the sequences of modes. Addi-
tion of numbers or numbers and modes is not allowed;

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.33 viewstar.h File Reference 49

e 7x” multiplication - for repeating the sequences or modes many times.
Defined only for integer numbers or modes/sequences and integer num-
bers, in arbitrary order.

e 7(...)” for grouping the modes in sequences, with arbitrary degree of
enclosure.

Only the integer numbers are allowed for multiplication. Spaces are allowed
in a record.

Example:

string scenario = unroll("2*(A+3%B+C)","ABC")

returns ”ABBBCABBBC”.

6.33 viewstar.h File Reference

Shows the list of stars with help of GUI and lets user to choose the star from
this list.

#include <gstring.h>

#include <qlistview.h>

#include <qgarray.h>

#include "star.h"

Compounds

e class JKQListViewItem
e class ViewStarList

6.33.1 Detailed Description

MASS project: TURBINA module file header file for viewstar.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.34 widgets.h File Reference 50

6.34 widgets.h File Reference

Implementation of the different components the main window of TURBINA
collected together by mywidget.h.

#include <qthread.h>
#include <qapplication.h>
#include <qgpushbutton.h>
#include <qgdialog.h>
#include <qlayout.h>
#include <qlabel.h>
#include <qglineedit.h>
#include <gmultilinedit.h>
#include <qgcombobox.h>
#include <qtableview.h>
#include <qtextview.h>
#include <qglcdnumber.h>
#include "viewstar.h"
#include "trbexport.h"

#include "device.h"

Compounds

class QJKPushButton
e class QJKTable

e class HelpView

e class QJKMainView

e class TalkDialog

e class AdjustDialog

e class CenteringDialog
¢ class CommentDialog
e class ShowStarDialog
¢ class SelectStarDialog
e class IllumDialog

¢ class LightDialog

e class HVDialog

¢ class BackCorrectionDialog

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.34 widgets.h File Reference 51

e class CenterCorrectionDialog
e class DigitalClock

6.34.1 Detailed Description

MASS project: TURBINA module file header file for widgets.cpp

Author:
O. Voziakova, Sternberg Institute (ovoz@sai.msu.ru)

Version:
1.0

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch
© 1997-2002

Index

access.h, 24
add
sum, 21
add2map
rdm, 17

cfg.h, 25
cfgdialog.h, 25
cnt2asc.cpp, 26
color.h, 28
count_t

iocount.h, 33
counter.h, 28
createset

sum, 20

decldevicetree.h, 28
declmaintree.h, 29
device.h, 29
devicetree.h, 30
done

sum, 23

exchange.h, 30

FIRSTMEAN
sum, 20

getaddr
rdm, 14
getdata
sum, 22
getn
sum, 23
getname
rdm, 16
getref
sum, 21
getStamp
tools.h, 45
getstartpos
rdm, 15

gettype
rdm, 15
getut
rdm, 16
getvalue
rdm, 16
grabparams
rdm, 17
graph.h, 31

init
sum, 20
ioc, 11
read, 12
write, 12
iocount.h, 32
count_t, 33
max_count_t, 34
isheader
rdm, 15

LASTMEAN
sum, 20

light.h, 34

main.cpp, 34
maintree.h, 36
MASSCE

sum, 24
massmag

sum, 24
max_count_t

iocount.h, 34
messages.h, 36
motor.h, 36
mywidget.h, 37

names.h, 38

NOADDR
rdm, 18

NODATA
sum, 24

INDEX

53

outcontrol.h, 38

partype
sum, 19
partype_name
sum, 18
power.h, 39

rdm, 13
add2map, 17
getaddr, 14
getname, 16
getstartpos, 15
gettype, 15
getut, 16
getvalue, 16
grabparams, 17
isheader, 15
NOADDR, 18
readline, 14
read
ioc, 12
readline
rdm, 14
readmass.h, 39
reftype
sum, 19

SEASONMEAN
sum, 20

star.h, 41

sum, 18
add, 21
createset, 20
done, 23
FIRSTMEAN, 20
getdata, 22
getn, 23
getref, 21
init, 20
LASTMEAN, 20
MASSCE, 24
massmag, 24
NODATA, 24
partype, 19

partype_name, 18

reftype, 19

SEASONMEAN, 20
SUMDLM

summary.h, 42
summary.h, 42

SUMDLM, 42

tools.h, 44

getStamp, 45
trbconst.h, 45
trberror.h, 45
trbexport.h, 46
trbtime.h, 46
tree.h, 47

unroll
unroll.h, 48
unroll.h, 48
unroll, 48

viewstar.h, 49

widgets.h, 50
write
ioc, 12

Generated on Wed Apr 3 18:00:53 2002 for Part I. by Doxygen written by Dimitri van Heesch

© 1997-2002

