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1 Introduction

Differential image motion monitor DIMM widely used in studies of optical turbulence, is des-
tined to measure the integrated effect of the Earth’s atmosphere on the image quality. The
advantages of this tool are obvious: a simple and reliable device for longstanding and field stud-
ies, measurements are easily interpreted on the basis of the theory of light propagation through
turbulent media, the result is directly linked to the main astroclimatic characteristics — image
quality, i.e. seeing.

However, there are several effects that produce the systematic and random errors in measure-
ments with the DIMM instrument. Although these effects were discussed many times, acceptable
unambiguity and certainty in their estimate has not been achieved. This paper presents the re-
sults of additional analysis and impact assessments of the following effects on real measurements:

1. The effect of the propogation of the distorted wave (discard of the near-field approxima-
tion).

2. The effect of the width of the spectral band of radiation (the polychromatic effect).

3. The effect of finite exposure. Method of correlation to account for this effect.

4. The influence of the duration of measurement. Evaluation of low-frequency input of dif-
ferential motion.

The preparation for the processing of data obtained with MASS/DIMM instrument in 2007
- 2009 at Mt. Shatdzhatmaz, initiated the development of a practical method of accounting for
these effects in scope of joint processing of MASS and DIMM measurements.

In the first two sections the basics of the theory are presented, which describes the effect of
differential image motion in the approximation of small perturbations — a situation which, as a
rule, implemented in typical conditions of astronomical observations. This basis then are used
for the case with the wave propagation and for introducing of the concept of DIMM weighting
function for later practical use. In section 5 weighting function for the case of polychromatic
light is calculated.

2 The spatial spectrum of differential motions

Expressions for the spatial spectrum of differential motions are given in the classical works of
Fried [1] and Martin [2]. In the work of Martin, they are obtained by gradual spatial filtering
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of the power spectrum of phase perturbations in the assumption of Kolmogorov’s model of the
optical turbulence (OT).

, Fφ(fx, fy) J = C2
n ∆h : It is known that the spectral power density of phase

fluctuations Fφ(fx, fy) proportional to the intensity of optical turbulence J = C2
n ∆h in the

homogeneous and isotropic layer:

Fφ(fx, fy) = Fφ(f) = 0.0229r
−5/3

0
f−11/3 = 0.0229 · 0.423

(

2π

λ

)2

J f−11/3, (1)

where f = (f2
x + f2

y )1/2 — modulus of spatial frequency, fx and fy — spatial frequency compo-
nents, and r0 — Fried parameter. For practical purposes, is preferable to consider the J , since
this value is used to describe the vertical profile of the OT.

The expression for the power spectrum of differential motion will depend on what is meant
under the center of the image. This is important because the distorted wave front is not flat
within the used aperture and image is not diffraction nor axis-symmetric even. Usually it is a
center of gravity of the image (g-tilt) [2], or the normal to approximating the wave front plane
(z-tilt) [3]. The difference between the two approaches is analyzed in the paper [4].

The spatial spectrum of the differential motion in the sense of the center of gravity of the
image, built objective with an aperture of D seems as follows [2]:

F g
a (fx, fy) =

(

λ

2π

)2

(2π(fx cos θ + fy sin θ))2
[

2J1(πDf)

πDf

]2

Fφ(fx, fy), (2)

where θ — the angle between the x axis and the direction in which the motion is measured. For
further conveniently, the x-axis is directed along the direction of the wind.

The spectral density Fd(fx, fy) of the differential motion, measured in the DIMM, is obtained
by multiplying the Fa at the spectral filter corresponding two apertures placed at a separation
B at an angle θ − ψ from axis x:

Fd(fx, fy) = [2 sin(πB(fx cos(θ − ψ) + fy sin(θ − ψ)))]2Fa(fx, fy) (3)

Figure 1: Contour representation of the spectral power density of differential motion in a)
longitudinal and b) transversal directions. DIMM apertures are directed along the axis u.
Contour curves are plotted on a logarithmic scale in increments of 0.5.
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The values of ψ = 0 corresponding to the longitudinal motion (along the base of the instru-
ment) and ψ = π/2 corresponding to the transversal motion, have practical meaning. In Fig. 1
two-dimensional contour image of the spectral power density for these cases are shown. In the
picture, the DIMM base is directed along the axis of x, if to rotate the base, the picture will be
rotated with it. Note the principal difference in the form of the spatial spectrum for the longi-
tudinal and transversal cases — first has a dipole structure, and the second has a quadrupole
one. In both cases, the power density when |f | = 0 is zero.

Note that after substitution of (1) in (2) the final expression for the spectral density will not
depend on wavelength λ. The motion variance, by definition, expressed in terms of their power
spectrum as follows:

σ2
d =

+∞
∫∫

−∞

Fd(fx, fy) dfx dfy, (4)

Really, substituting here ((3) and integrating, we obtain the necessary practical expression
relating the measured differential motion and turbulence intensity J of the layer. In the approx-
imation of small perturbations can be further integrated expression 4 along the line of sight and
get a well-known formula from [5].

Recall that the expression (2) is obtained for the case of near-field approximation, that is,
excluding the effect of propagation of the distorted light wave.

Similarly, one can find the appropriate expression for the differential motion power in the
sense of z-tilt, using the lightly modified expression from the work [4]

F z
a (fx, fy) =

(

λ

2π

)2

(2π(fx cos θ + fy sin θ))2
[

8J2(πDf)

(πDf)2

]2

Fφ(fx, fy) (5)

The spectral density in the sense of z-tilt differs from F g
a (fx, fy) only with the aperture filter.

This filter is somewhat wider than the g-tilt aperture filter, although its transmission decreases
rapidly at the high frequencies

3 The temporal spectra of differential motion

The temporal spectra of the differential motion have greater practical interest than the spatial
spectra, since the real device registers the image motion from frame to frame, obtained at
different times.

At first, we consider an isolated turbulent layer moving with constant velocity w. The
subsequent transformation of the spatial spectrum to the temporal one is based on Taylor’s
hypothesis of the frozen turbulence [7], i.e. on the assumption that the phase distortions vary
significantly slower than the D/w. For this case, the temporal power spectrum of differential
motion is given by [2]:

Fd(ν) =
2

w

∫

∞

0

dfy Fd(
ν

w
, fy) (6)

Recall that the x-axis is directed along the wind. Due to the fact that the spatial spectrum does
not possess central symmetry, the temporal spectra will be different for different directions of
the DIMM base. Normalized spectra Fd(ν) calculated for 4 directions of wind are presented in
Fig. 2.
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Figure 2: The temporal spectra of differential motion for different wind directions relative to
the base. The spectra are normalized at wind speed. The curves are calculated for D = 0.09 m,
B = 0.2 m and r0 = 0.1 m. The spectra for the longitudinal motion are presented on left, for
the transversal on right

It is clear that in a real situation the wind fluctuates greatly on speed and direction. There-
fore, the final power spectrum will be a complex composition of many individual spectra. First
of all smeared quasi-periodic details in the high-frequency, and the spectrum converges to the
dependence ν−1. In the low-frequency ν ≪ w/D the spectrum is determined by the slow layer
with noticeable turbulence, mainly — by ground layer. Depending on the angle between the
wind direction and the DIMM base, the power of differential motion comes or at a constant level
or down as power law with exponent 4/3 with the frequency approached to 0.

In our case, separating these domains characteristic frequency is 1−3 Hz for a typical ground
winds. Analysis of the low-frequency region of the spectrum can not be correct, because the use
of the “frozen” hypothesis at such times is not always legal.

4 Taking account of wave propagation — DIMM weighting func-

tions

The whole theory and practice of determining the seeing β from differential motion, measured
with DIMM, are built in the approximation of near-field diffraction, ie the case of D2 ≫ λz.
However, for real devices in real situations, this condition is not always satisfied.

The problem escalated after the appearance of large amounts of measurements with the
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MASS/DIMM instrument, when it became clear that there are many cases of dominant high-
altitude (8 – 24 km) turbulence. In practice this leads to the fact that the DIMM underestimate
the total intensity of the OT, and efforts to calculate the intensity of the surface layer as JDIMM−
JMASS results to negative intensities in the surface layer [5, 6, 8].

This problem was noted in many studies, such as [5], and the impact of the effect was assessed
in [4, 9]. Nevertheless, no practical steps to correct the underestimation of high OT has not
been fulfilled.

Prove that the correction is possible in the terms of the weighting functions (used in the
theory MASS [10, 11]), i.e. a dependence of the variance of differential motion σ2 on the profile
of the turbulence C2

n(z) may be represented as follows:

σ2 =

∫

∞

0

C2
n(z)W (z) dz, (7)

To account for the propagation effect of distorted light wave from the layer located at a
distance of z is sufficient in the formula (1) for the spectral power density of phase fluctuations
add a Fresnel filter cos2(πλzf2), as done in [4]:

∆Fφ(f, z) = 0.009687

(

2π

λ

)2

C2
n(z)∆z f−11/3 cos2(πλzf2), (8)

Further transformations are based on the fact that in the approximation of weak perturba-
tions the power of phase fluctuations of the wave is the sum of the power spectra of all thin
layers, which it crosses [7]:

Fφ(f) = 0.009687

(

2π

λ

)2 ∫

∞

0

C2
n(z)f−11/3 cos2(πλzf2) dz. (9)

Obviously, since none of the three filters (the gradient, aperture and differential) does not depend
on the distance z we can perform integration with respect to the frequency before integration

over z. Denote the full spectral filter as
(

λ
2π

)2
Φ(fx, fy). Recall that this filter depends on the

parameters of the device D, B and the motion angle ψ. Then the expression for the variance of
the differential motion can be written, omitting the subscript d, as:

σ2 =

∫

∞

0

dz C2
n(z) × 0.009687

∫∫

+∞

−∞

dfx dfy Φ(fx, fy)f
−11/3 cos2(πλzf2). (10)

The inner double integral can be interpreted as altitude weighting function DIMM W (z),
depending on the parameters of a particular device as well as MASS weighting functions. The
practical application requires to calculate two such functions — Wl(z) for longitudinal and Wt(z)
for the transversal motion.

Wl,t(z) = 0.009687

∫∫

+∞

−∞

dfx dfy Φl,t(fx, fy)f
−11/3 cos2(πλzf2). (11)

Transforming to polar coordinates in expression (11) it can be integrated analytically over
the angle φ [2] and the formula for the weighting function becomes:

W g,z
l,t (z) = 0.009687×8π3

∫

∞

0

df Ig,z(f)

[

1 − 2 cos2(ψ)J0(2πfB) + 2 cos(2ψ)
J1(2πfB)

2πfB

]

. (12)
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Figure 3: Left: normalized to near-field approximation weighting functions DIMM W (h)/W (0)
for the case of g-tilt. Circles — the longitudinal motion, triangles — transversal. Right: the
ratio of longitudinal to transverse variances. Filled symbols — calculation for λ = 500 nm, the
empty — for λ = 750 nm

Note that the difference in the weighting functions for the cases of g-tilt (2) and the z-tilt (5) is
described by the term Ig,z(f) depending only on the modulus of frequency:

Ig(f) = f−2/3

[

2J1(πfD)

πfD

]2

cos2(πλzf2), (13)

Iz(f) = f−2/3

[

8J2(πfD)

(πfD)2

]2

cos2(πλzf2). (14)

Given that ψ = 0 for the longitudinal motion and ψ = π/2 for the transversal one, we obtain
finally:

W g,z
l (z) = 2.403

∫

∞

0

df Ig,z(f)

[

1 − 2J0(2πfB) + 2
J1(2πfB)

2πfB

]

(15)

W g,z
t (z) = 2.403

∫

∞

0

df Ig,z(f)

[

1 − 2
J1(2πfB)

2πfB

]

(16)

Calculation of Wl,t(z) can be made by numerical integration, just as in the program atmos

the set of weighting functions MASS are computed. Note that in contrast to the near-zone
approximation, the wavelength dependence of differential motion is appeared and, consequently,
the dependence on the spectral composition of radiation. Directly integrate over λ, as well as
in the case of weight functions MASS [12], can not be performed due to the motions in close
wavelengths are strongly correlated. However, of the smallness of the effect (it is certainly less
than a factor of 0.5) some effective wavelength can be used.

In Fig. 3 the weighting functions are presented, calculated for our instrument and normalized
to its value at zero altitude. In fact, the weight functions depend on one parameter — Fresnel
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radius r2
F = λz, so the change in wavelength can easily compensate for changes in altitude. For

example, in Fig. 3 weights for λ = 750 nm are transformed into curves for λ = 500 nm by scaling
to 1.5 times in altitude.
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Figure 4: Left: Distributions of the measured ratio σ2
l /σ2

t for “positive” (black) and “negative”
(light) graund layer OT JDIMM −JMASS . Right: Dependence of medians of graund layer OT on
intensity OT in 16 km layer. Dashed lines are 25 75% quartiles. Light vertical line corresponds
to OT generating scintillation index 0.3 for A aperture of MASS device

Note the significant difference between the behavior of Wl(z) and Wt(z), resulting from
differences in the form of spatial spectra of longitudinal and transverse components of motion
(Fig. 1). As a result, the ratio σ2

l /σ2
t varies with the altitude as shown in Fig. 3 on right.

This effect can be observed in practice, if we select the situation with a dominant high
turbulence. All results of preprocessing performed in the approximation of the near-zone, were
divided into two groups: with positive OT intensity in the ground layer and with negative value
of JDIMM − JMASS . Effect of high-altitude turbulence is confirmed by the distributions of the
observed ratio σ2

l /σ2
t for these two groups, presented on the left in Fig. 4. Median values are

1.58 and 1.73, respectively.
In right part of Fig. 4 the behavior of the median value of JDIMM − JMASS is shown as

dependence on the intensity of the 16 km layer J16. It is evident that the effect of “negative”
ground turbulence is indeed induced by underestimation of high-altitude turbulence. Bend of
the medians curve begins long before the scintillation generated 16 km layer reaches saturation,
and therefore can not be fully explained by the revaluation of OT with the instrument MASS.

As shown in [4], actually used in the DIMM method of determination the center of the image
as a center of gravity, after clipping the image wings at a certain level or at a certain radius, is
closed into the case of z-tilt. Therefore, the processing program uses the expression (14). Note
that the difference between the W g

l,t(0) and W z
l,t(0) is large enough and for a geometry of our

device is 12%, and 17%. The difference between the W z
l,t(0) and the previously used formulas

from [5] is less than 3% and 5% respectively.
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Figure 5: Left: Weight functions for our DIMM (D = 0.09, B = 0.196). Solid lines — W z

l,t(0),,

dashed – W g
l,t(0), thin lines — the values computed by the formulas of [5]. Right: weighting

functions DIMM: solid curves — our device, dashed — DIMMA IAC: D = 0.05, B = 0.20,
dash-dot curves — miniDIMM: D = 0.05, B = 0.05. Functions for longitudinal motion marked
in black, for transversal — by gray

Thus, for the DIMM permanently being in use with device MASS, does not necessarily seek
to ensure that the approximation of the near field was carried out as much as possible. This
enables a fundamentally alter the geometry of the device. For example, DIMM may consist of
two 5 cm aperture, located close to each other. The sensitivity of such a device falls roughly
twice — for heights larger than 10 km, the instrument will operate in the far field, but the lens
about 10 cm in diameter can use as the feeding optics.

5 Polychromatic effect in differential motion

As already noted, the differential motion cease to be achromatic when we go beyond the near field
D2 ≫ λz. The question of influence polyhromatic radiation was studied in [13], however, from
a practical point of view, the approach shown in [12] for the case of polychromatic scintillation
is preferable.

The magnitude of the differential displacement of star images in DIMM geometry α(λ)
depends on the wavelength if take into account the propagation effect. Considering a thin
turbulent layer at an altitude of z we can write:

α(λ) =

∫

φ̃(~f, λ)ψ̃(~f, λ) cos (πλzf2)d~f, (17)

where aperture filter is included in DIMM spectral filter ψ̃(~f, λ), φ̃(~f, λ) — phase fluctuation
spatial spectrum. The integration is over all two-dimensional spatial frequencies ~f . When
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differential motion is measured in some spectral band, the integration over the wavelength must
be performed:

α =

∫

α(λ)A(λ)dλ, (18)

where A(λ) — the normalized spectral characteristics of radiation.
Hence, knowing that 〈α〉 ≡ 0, we can determine the variance σ2 = 〈α2〉 of differential motion

σ2 =

∫∫

〈α(λ1)α(λ2)〉A(λ1)A(λ2)dλ1dλ2 (19)

The expression for the covariance 〈α(λ1)α(λ2)〉 is obtained from (17):

〈α(λ1)α(λ2)〉 =

∫∫

〈φ̃(~f1, λ1)φ̃
∗(~f2, λ2)〉ψ̃(~f1, λ1)ψ̃

∗(~f2, λ2) cos (πλ1zf2
1 ) cos (πλ2zf2

2 )d~f1d~f2

(20)
We use the expression (10) from the work [12]:

〈φ̃(~f1, λ1)φ̃
∗(~f2, λ2)〉 = Fφ(~f1)δ(|~f1 − ~f2|) =

4π2

λ1λ2

Fl(~f1)δ(|~f1 − ~f2|), (21)

what allows to reduce the double integral to a single, and determining achromatic spectral filter
Φd(~f1, ~f2) = 4π2

λ1λ2
ψ̃(~f1, λ1)ψ̃

∗(~f2, λ2), we obtain (20) as follows:

〈α(λ1)α(λ2)〉 =

∫

Fl(~f)Φd(~f) cos (πλ1zf2) cos (πλ2zf2)d~f (22)

Thus, we clearly selected the dependence on λ. Now, the covariance can be substituted into
the expression (19), reversing the order of integration and denoting

SA(~f, z) =

∫∫

A(λ1)A(λ2) cos (πλ1zf2) cos (πλ2zf2)dλ1dλ2 =

[
∫

A(λ) cos (πλzf2)dλ

]2

.

(23)
The result is the following expression for the variance of differential motion:

σ2 =

∫

Fl(~f)Φd(~f)SA(~f, z)d~f (24)

The function SA(~f, z) is a square of the real part of the Fourier transform of the distribution
of energy in the radiation spectrum [12] and depends only on the modulus of frequency:

SA(f, z) = [Ã(zf2/2)]
2
. (25)

Unlike the case of scintillation the Fourier transform is taken from the distribution itself rather
than distribution divided by λ. The reason is that the motion in the near field doesn’t depend
on wavelength, but the scintillation always depends on λ.

The expression (24) differs from the monochrome case only in that the usual Fresnel filter
cos2(πλzf2) is replaced by polychromatic filter SA(zf2/2). Therefore, the results of previous
section can be generalized to a wide spectral band of the detected light. Simply replace the filter
in the expressions (13) and (14). Calculated for our device polychromatic Fresnel filter is shown
in Fig. 6 on the left.

Example of normalized weighting function W (z) for our DIMM is shown in Fig. 6 on right.
It is seen that the difference from the monochromatic case is not so great. This is due to the fact
that the wide band effect affects primarily at high spatial frequencies, and DIMM is sensitive to
relatively low frequencies.
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Figure 6: Left: polychromatic Fresnel filter for EC650 CCD camera and star of spectral class
A0 V (solid line) and K0 III (dashed line). Right: weighting functions of our DIMM for polychro-
matic case (solid curves) and for monochrome light corresponding to the effective wavelength
(dashed) of spectral class A0 V. Longitudinal motion is black, transversal one is gray

6 Finite exposure effect

Understanding that wind shifts the turbulence at distance comparable to the size of the DIMM
aperture within a typical camera exposure of 0.01 s, gave rise to the theory [2] and experimental
[14] studies the effect of exposure length to the measured. power of differential motion. The
significance of this effect led to the appearance of methods of correction involving or not an
additional data.

In practice, measurements with the DIMM instrument and its processing is most often used
method of interlacing exposures (see, eg, [4]). The essence of this method lies in the alternation
exposures with the usual length and doubled, for example, 5 and 10 ms. Next, for these series the
image quality is separately calculated and the resulting seeing is obtained as some combination
of them.

When working with high-speed cameras such method does not apply, because you can not
change the exposure without stopping the video stream. Therefore, the program dimm when
processing frames calculates additional correlation between adjacent measurements of the im-
ages. The theoretical basis of the correction using the correlation described below.

Estimation of the effect can be obtained by multiplying the temporal power spectrum of the
motion on the spectral filter of signal averaging during the exposure τ . In the paper [2] the
spatial averaging over the coordinate x (we recall that the x-axis is directed along the wind) in
a rectangular window with a width equal to the value of wind shear wτ is used:

σ2
1(wτ) =

∫∫

∞

−∞

dfx dfy Fd(fx, fy) sinc2(fxwτ), (26)

where the factor sinc2(fxwτ) — the spectral filter is one that meets such averaging. Natu-
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Figure 7: Upper row: the relative drop in variance σ2(w) of the differential motion, depending
on wind speed. Bottom row: the correlation coefficient of nearby exposures ρ1. Left column:
longitudinal motion, right column: transversal motion. The solid curves denotes the case of
wind along the base, the dashed curves — wind across the base, dashed-dotted — under angle
45◦. Thick curves — wave propagation is not taken into account (low turbulence), thin curves
— propagation from a height 16 kilometers (high turbulence). The curves are calculated for
exposure 4 ms and frames period 5 ms

rally, the result depends on the orientation of the DIMM base on the wind and the measured
components of motion.

Similarly, when averaged over two successive exposures τ with period τp (τp ≥ τ) the motion
variance σ2

2(wτ, τp) looks like:

σ2
2(wτ, τp) =

∫∫

∞

−∞

dfx dfy Fd(fx, fy) sinc2(fxwτ) cos2(πfxwτp), (27)
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where sinc2(fxwτ) cos2(πfxwτp) is the filter corresponding to such averaging.
The coefficient of correlation of positions in proximate image frames ρ1 is expressed through

these quantities as follows:

ρ1 =
2σ2

2(wτ, τp)

σ2
1
(wτ)

− 1 (28)

In Fig. 7 the calculated dependence σ2(wτ)/σ2(0) and the correlation coefficient ρ1 on the
wind speed for different situations are shown, performed for our DIMM instrument and camera
settings: τ = 4 ms and τp = 5 ms.

The graphs show that the transversal more susceptible to the effect of discussion and with
the wind speed, reaching to 40 m/s in the tropopause, only 50 – 70% power is measured, even
at fairly short exposure. Given the propagation somewhat reduces the effect, since it weakens
the high-frequency part of the spectrum. Different wind directions bring additional uncertainty
about 2 times into fraction of power loss.

The behavior of quantity ρ1 is also strongly dependent on the wind direction in the turbulent
layer. However, we note that the extreme situations: the wind is strictly along the base or
severely across virtually not implemented due to random variations of wind direction. Rated
characteristic value of these variations and considerations of symmetry of the spatial spectrum
of differential motion leads to the fact that the real uncertainty will be considerably less.

Moreover, the dependence on the direction for the measured power σ2(wτ) is partially com-
pensated by syn-phase dependence of the correlation coefficient and the dependence of σ2(wτ)
on ρ1, shown in Fig. 8, looks more determinately, for the exception is the case of transversal
motion at a wind angle of 45◦. These relations will be used for calculating of the correction by
finite exposure time
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7 Correction of the differential motion power

In the works [2, 14] the correction was evaluated on the basis of model assumptions about the
profiles of C2

n(h) and of the wind speed w(h). The method of interlaced exposures as well as
the method of measured correlation are developed for correction, independent of the model
assumptions. The problem is that the dependences shown in Fig. 8, are implemented within
separate thin layer.

Let us show that, at least in the case of linear approximation, the correction to zero exposure
is possible for measured values σ̃2 and ρ1. Conventionally, we denote the motion power caused
by a layer at a height of h as σ̃2(h) and the covariance σ̃2(h)ρ1(h). Since the covariance as well
as dispersion, are formed in complete independence of phase distortions in the different layers
(the main paradigm of weak perturbations), then the totals can be written:

σ̃2 =

∫

σ̃2(h) dh, σ̃2ρ1 =

∫

σ̃2(h)ρ1(h) dh (29)

The true (at zero exposure) power σ2 will be presented as

σ2 =

∫

σ2(h) dh =

∫

σ̃2(h) · f(ρ1(h)) dh, (30)

where f(ρ1(h)) — corrective function, whose argument is correlation coefficient in the layer. If
this function is described by a linear law a0 + a1ρ1 then we can write (30) in the form:

σ2 =

∫

σ̃2(h)(a0 + a1ρ1(h)) dh = a0

∫

σ̃2(h) dh + a1

∫

σ̃2(h)ρ1(h) dh = a0σ̃
2 + a1σ̃

2ρ1. (31)

More complex corrective function (which more precisely describes needed relationship) does not
provide additivity and, therefore, in general, may give worse results. These same considerations
apply to the method of interlaced exposures, that is, only the use of linear correction ensures
its independence on the altitude turbulence distribution.

It should be borne in mind that Fig. 8 shows the behavior of σ̃2(ρ1)/σ2 while the family of
the corrective functions is an inverse relationship: σ2/σ̃2(ρ1).

To find the most probable linear approximation, the coefficients ρ1, obtained in the mea-
surements of 2007 – 2009 on top of Shatdzhatmaz, have been investigated. In Fig. 9, left, the
cumulative distributions constructed by minute values are shows. Median of correlation coef-
ficient are 0.85 for both components of the differential motion. The reliability of the curves is
confirmed by the values of relative errors of ρ1 constituting an average of 0.03.

The same figure on the right shows the medians of ρ1 as function of the surface wind speed. It
is seen that even in the absence of surface wind, measured dependences lies lower than estimated
ones due to that in the free atmosphere wind is always present.

From the graphs presented in Fig. 8 implies that for 50% of our data, the needed correction
is less than 2% (or about 1% in seeing β). For 90% of whole data correction is less than 5%.
Nevertheless, using the differential distribution of the observed ρ1 as weights, we have built
corrective dependence as

σ2 = σ̃2 (1 + 0.15(1 − ρ1)) . (32)

According to this formula for the marginal cases ρ1 < 0.5 the correction is about 8% of the OT
intensity.
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Figure 9: Left: cumulative distributions of the observed correlation ρ1 (bold curves). Solid lines
denote longitudinal motion, dashed lines — transversal motion. The thin lines are presented
the distribution of the relative errors ǫ of ρ1 within 1 min accumulation (upper scale). Right:
the dependence of the median values of the measured ρ1 on the wind speed for the longitudinal
(black line) and transversal components (red). Thin dashed lines indicate 25 and 75 % quartiles.
The dash-dotted curves are calculated dependences for the wind 45◦.

Preliminary analysis of measurements with our DIMM device showed that exposure 4 ms
is too long for the brightest stars due to signal saturation in the image center.. Therefore, from
the December 2009 the exposure was reduced to 2.5 ms. In Fig. 8 on left, dashed line marks the
relation for such exposure. It is evident that the magnitude of the required correction is reduced
almost by half.
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