Part 1I. Data Processing

CONTENTS

Contents

1 MASS Software. Part II: Data Processing 1
2 Part II. Namespace Index 3
3 Part II. Compound Index 3
4 Part II. File Index 3
5 Part II. Namespace Documentation 4
6 Part II. Class Documentation 57
7 Part II. File Documentation 77

1 MASS Software. Part II: Data Processing

1.1 Instroduction

This document represents the second part of the MASS Software Reference
Manual and gives a detailed information on how the scientific output in-
formation is produced from the PMT count data. The preceding Part 1
dealt with the MASS device control issue where the place of scientific mod-
ules in the general hierarchy of TURBINA modules was specified. So, the
question "where, when and how the [atmos/scind/scan] module is used in
TURBINA” should be addressed there.

1.2 Scientific modules for MASS

There is a number of modules which serve for handling of scintillation indices
(SI), atmospheric parameters and turbulence profiles etc. ”Handling” means
the creation/calculation of respective entities, their write/read operations
with files and export in other modules via some so called ” get”-functions.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

1.2 Scientific modules for MASS

SUMMARY

ATMOS

atm. parameters and Cn2(z)

SCAN SCIND WEIF

servo-scanning handling scintillation indices handling Sl weight. function handling

/countt

far

IOCOUNT NRUTIL NR

memory and error handling Num. Recipes agorithms

NS

Figure 1: Organization of scientific modules in MASS Software

Scientific modules are organized in three hierarchical levels. On the top,
the atmospheric calculations module stays (ATMOS), on the bottom - the
memory and mathematics (NR and NRUTIL). In the middle - the count-
processing utilities SCIND and SCAN and theoretic weight calculator WEIF.

The module on a particular level can refer and use the modules from the
same level and below which is reflected by the arrows on the figure. The mod-
ule names without boxes stand for the ones outside the ”scientific” scope of
modules for TURBINA (e.g. the night-report creator SUMMARY). Dashed
arrows represent the weak dependence and the particular structures (func-
tions or types) which are taken from the module for usage are indicated near
such arrows. For example, it’s only the type count_t of the detector pulse
counts which is taken from the (non-scientific) module IOCOUNT.

Each module has a header section names ”Usage” which describes the se-
quence of calls to particular procedures which maintains the desired way of
data processing.

See the File Index for the further detailed description of these modules.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

2 Part II. Namespace Index

2 Part II. Namespace Index

2.1 Part II. Namespace List

Here is a list of all documented namespaces with brief descriptions:

atm (Namespace atm contains the set of functions of highest
logical level for atmospheric calculations) 4

sc (Declarations of all functions and constants to handle scin-
tillation indices) 21

wf (Additional to wf_t (p.65), this namespace wf contains
two supplementary functions - getzshift() (p.47) and the
sample progress indicator progress() (p.48). Also, all the
module constants are defined here) 45

3 Part II. Compound Index

3.1 Part II. Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

scan_t 57

wf_t 65

4 Part II. File Index

4.1 Part II. File List

Here is a list of all documented files with brief descriptions:
atmos.hxx 77

nr.h (A set of NR recipes under use in TURBINA data pro-
cessing) 79

nrutil.h (Memory and errors handling in NR and data pro-
cessing utilities of TURBINA) 81

scan.hxx (Servo-scanning (centering, focussing) and scans
reduction) 84

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5 Part II. Namespace Documentation

scind.hxx 85
weif.cpp 87
weif.hxx 88

5 Part II. Namespace Documentation

5.1 atm Namespace Reference

Namespace atm contains the set of functions of highest logical level for
atmospheric calculations.

Enumerations

e enum ordint { FSEE, WSEE, FM0, WM0, FHEFF, WHEFF,
ISOPL, M2, TC }

e enum what { ATMPAR, CN2PROF, O_CSCIND }

e enum poweridx { IFSE, IWSE, IISP, IEFF, IISK }

e enum cn2method { FIXEDLAY = 'X’, FLOATLAY ="L’ }

Functions

e void update (const char xwfile, const char xcheckfile, double zshift1,
double zshift2, double z0=wf::Z0, double zmax=wf::ZMAX, double
dz=wf::DZ, double dzmin=wf:: DZMIN)

Update the data structures for atmospheric calculations with a new weight
function file.

e void done ()

Deallocate the memory reserved for module structures.

e double getval (ordint what)

Return calibrated atmospheric parameter.

e double geterr (ordint what)

Return the relative error of the calibrated atmospheric parameter.

e double getcn2see ()

Return the seeing computed from the last restored profile.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1

atm Namespace Reference

int getnen?2 ()

Return number of the Turbulence profile altitudes.

double getzen2 (int i)
Get the altitude of the restored turbulence profile layer.

double getcn2 (int i)

Get the strength of the restored turbulence profile layer or chi-square.

void calcint (double xscind, double xscinds)

Compute the atmosphere integral parameters and Cn2-profile.

double calen2 (double *scind, double xscinds, double xe2scind, double
xe2scinds, double zdist, char meth)

Restore the low-resolution Cn2 profile.

const double * geto_csi ()

Get the normalized observed-model indices restored by calen2() (p.13).

void avgint (double desi, double edesi, double zdist)

Average Cn2 integrals and compute from them the atmospheric parame-
ters.

void write (FILE f, const char xstamp, atm::what what, bool
header=false)

Write computed atmospheric parameters or restored CnZ2 profile or the
header line for one of them.

void interpolate (double z, double xintcn2, int nz, double xzin=0,
double *cn2in=0, int nzin=0)

Interpolate the last restored Cn2 profile into new grid.

const char * getfmt (atm::ordint i)

Get format respective to integral ID.

const char * getname (atm::ordint i)

Give a name of a field in output file.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference

Variables

e const bool HEAD = true

e const int NMODE = 2

e const double MINRELW = le-3
e const int MAXNBASE = 10

e const int NMEAS = 256

e const double POWSEE = 0

e const double POWISP = 5/3.

e const double POWEFF = 1.0

e const double POWISK = 2.0

e const int NPOWER =5

e const char USEWEIGHT [NPOWER][2 x10+1]
e const char FITSCIND]

e const double HBOUND = 1.0

e const double KS = 1.73588e+07
e const double KP = 0.000756348
e const double KT = 0.175

e const double DZCN2 =1

e const char ERRFMT [] = " %s%7.3f
e const char ANGFMT [] = 7 %s%5.2f”
e const char HEFFMT [] = " %s%5.0f”

e const char TAUFMT [] =" %s%5 27

e const char ATMDLM [] =

e const char CHI2FMT [] = " %s%6.2f"
e const char ALTFMT [] = " %s%4.1f"

e const char CN2FMT [] = " %s%8.2¢”

5.1.1 Enumeration Type Documentation

5.1.1.1 enum atm::ordint

Order of atmosphere integrals in their storage matrix and output file line. In
a file, each value is followed by its error. The element "LAST” must always
stay at the end since it gives a number of integrals in enumeration

Enumeration values:
FSEE free seeing

WSEE whole atm. seeing
FMO non-converted integral of Cn2 over free atmosphere

WMO non-converted integral of Cn2 over whole atmosphere

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference

FHEFF effective altitude of turbulence in free atm.
WHEFF effective altitude of turbulence in whole atm.
ISOPL isoplanatic angle

M2 second moment of turbulence (integral(Cn2(h)+h”2dh))

TC atmospheric time constant

5.1.1.2 enum atm::what

Writing selector in write() (p.17):

Enumeration values:
ATMPAR write atmospheric parameters

CN2PROF write the restored Cn2 profile with altitudes and Chi-
square

O_CSCIND write normalized observed-model scintillation indices

5.1.1.3 enum atm::poweridx

Arrangement of the moment decomposition coefficients in the coef[] array

Enumeration values:
IFSE coef[Free seeing][]:

IWSE coef[Seeing][]

IISP coef[Isoplanatic angle][]

IEFF coef[Turbulence effective altitude][]
IISK coef[Isokinetic angle][]

5.1.1.4 enum atm::cn2method

Enumeration values:
FIXEDLAY ’fiXed” layers method

FLOATLAY ’fLoating” layers method
5.1.2 Function Documentation
5.1.2.1 void update (const char x wfile, const char x checkfile,

double zshift1, double zshift2, double z0 = wf::Z0, double zmax =
wf::ZMAX, double dz = wf::DZ, double dzmin = wf::DZMIN)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference

Parameters:
wfile The file name of the weight matrix (see wf_t::write() (p.71))

checkfile file to print the moment approximation information for
checking (may be null)

zshift1 Altitude shift (in [km], normally non-positive) for the normal
mode or for one part of the generalized mode measurements

zshift2 Altitude shift (in [km], normally negative) for the rest part
of the generalized mode measurements

z0 Cn2 moments decomposition altitude grid: see wf_t::setzgrid()
(p- 70)
zmaz see wi_t::setzgrid() (p.70)

dz see wf_t::setzgrid() (p.70)
dzmin see wf_t::setzgrid() (p.70)

This function should be called each time the scintillation weight functions
are changed due to some reason (new star has another spectrum, new system
magnification etc.) or the measurement mode parameters (altitude shift in
generalized mode, number of Base-times per Accumulation time, etc.) are
changed.

First, if the supplied name of the weight function file differs from that loaded
before (the name is stored internally), this new weight functions set is read
from the file. Also, from the weight file the number of indices (equal to that
of weights) is derived.

If neither the weight functions file name, nor the altitude z-shifts of the pupil
are changed, nothing is done but only the reset of the computed atmospheric
parameters.

If either the weights or z-shifts are changed, then the calculations of the Cn2
moments are made. They involve the shift of the weights set by zshift! and
zshift2. These shifts can be computed with wf::getzshift() (p.47) and are
returned negative by this function for positive focal lengths supplied. Thus,
the negative zshift implements the generalized mode.

The decomposition also involves the approximation of the power-law de-
pendences of altitude by a set of these shifted weight functions. The SVD
method is used for this. Approximation enables us to represent the Cn2-
moments by a set of scintillation indices. If zshift1 or zshift2 differ from each
other, then both the coefficients for generalized and non-shifted modes are
obtained. The coefficients are stored in global arrays to be used in calcint/()

(p.12).

The computations are done in a loop which is passed twice.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference

In a first loop, the job is done for the Normal mode measurements with one
altitude shift equal to zshift! (normally it is 0). It goes through steps:

e the set of weight functions is shifted by zshift! and interpolated into
the equidistant grid with 1km spacing. The obtained matrix of weights
is saved in a global 2-DIM array for usage in calen2() (p.13).

e the set of weight functions is again shifted by zshift! and interpolated
into the user-defined altitude grid set by 20, zmazx, dz, dzmin.

e the altitude grid is scanned and the grid index IBOUND where the
altitude reaches the boundary layer height (~1km) is found.

e the shifted weight matrix is copied with transposition into the matrix
W for SVD decomposition. It has dimensions ncol=Nw x nrow=Nz,
where the number of weights Nw is less than the number of altitudes
Nz. This is ensured in advanced in init().

e the obtained matrix W is SVD-decomposed by NR utility
nr::svdemp() into two orthogonal matrices U and transposed V and
a diagonal matrix of singular values diag(w):

(W) = (U) x diag(w...wny) X (V)

e the small singular values are rejected (reset to 0) to have the minimal
ratio w;/Wyey more than atm:MINRELW (p. 19). If there are still
more than atm::MAXNBASE (p. 19) singulars, the least values are
also rejected.

e the altitude power vectors h=\em 2"k are produced for k=0, 1, 5/3 and
2. The zero power (for seeing related Cn2-integral) is made two ways
- normal exact unity for whole-atmosphere seeing and with ”dumped”
values below the altitude grid index IBOUND for ”free atmosphere”
seeing. The latter is equal to 1 above the boundary layer and mimics
the AB-channels differential scintillation index weight below 1km.

e for each altitude power, the back-substitution utility nr::svbksb() is
used to produce the coefficients of altitude powers decomposition by
the weight functions presented in W:

coef = (V) x diag(1/wy...1/wyy,) x (UT - h)

These coefficients coef - vectors| Nw | - are stored as lines of a ma-
trix with rows number equal to the number of decomposed powers of
altitude (5).

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference

10

e the quality of the approximation of the altitude moments with weight
functions may be checked if one supplies the non-null file name check-
file. Then utility writes then the decomposition coefficients and the
approximated relations in this file. The file checkfile is rewritten each
time (not appended), and consists of two similar parts - the first for
approximations with zshift! -shifted weights (normally - non-shifted)
and the second for approximation with both zshift1 and zshift2 -shifted
weights.

In a second loop, the similar work is done using the second altitude
shift zshift2. 'Thus, the shifted weights which are marked as usable in
atm::USESHFT are added in the weight matrix for the Cn2 profile restora-
tion and in the matrix W (rightmost columns this time) for the decompo-
sition of altitude powers. The dimension Nw is increased compared to the
first loop by the number of used shifted weights.

The derived decomposition coefficients are saved as another matrix of coef
vectors. In the module, the pointers to these two matrices obtained in two
loops are stored as a 2-element vector of pointers. First element (i.e. matrix)
is accessed by the Normal mode results processing, the second is accessed
by the Generalized mode processing.

Before exit, the atmospheric integral converted parameters, Cn2 profile mo-
ments and their errors and number of layers (returned by getnen2() (p.11))
are reset to zero.

No job is done if error is set (nr::erget() (p.81)).

5.1.2.2 void done ()

Returns:
void

This function releases the memory allocated for weights, SED, coefficients
of Cn2-moments decomposition etc by init().

Note:
This function must be kept in strict sync with init(), update() (p.7)
and alloc().

5.1.2.3 double getval (ordint what)

Parameters:
what one of computed parameters - seeing, Heff, isoplanatic angle etc.
presented in ordint enumeration

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.1 atm Namespace Reference

11

Returns:
value or 0 on error

See also:
avgint() (p.15)

5.1.2.4 double geterr (ordint what)
Parameters:
what one of computed parameters - seeing, Heff, isoplanatic angle etc.

presented in ordint enumeration

Returns:
relative error value or "bad” value on error

If the value of parameters is not ”bad”, the ratio of the error of the parameter
to the parameter value itself is returned; otherwise, zero is returned

See also:
avgint() (p.15)
5.1.2.5 double getcn2see ()

Returns:
Seeing by Cn2[], arcsec

5.1.2.6 int getncn2 ()

Returns:
Length of the private computed Cn2-array

Note that this number is not necessary the length of allocated array cn2/].

See also:
calcn2() (p.13)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.1 atm Namespace Reference

12

5.1.2.7 double getzcn2 (int 1)

Parameters:
¢ layer index [0..getncn2() (p.11)-1]

Returns:
altitude [km]

See also:
calcn2() (p.13)

5.1.2.8 double getcn2 (int 7)

Parameters:
¢ layer index [0..getncn2() (p.11)-1] or getncn2() (p.11) for Chi-
square

Returns:
strength [m”-2/3]

Last element of required array contains the Chi-square measure of the fitted
profile accessible as getcn2(getnen2() (p.11)).

See also:
calcn2() (p.13)

5.1.2.9 void calcint (double * scind, double * scinds)

Parameters:
scind array of non-shifted indices

scinds array of shifted indices (may be NULL)

Using the Cn2-moments decomposition coefficients and scintillation indices,
the calculation of integral atmospheric parameters is performed. Number
of indices in either scind or scinds must be equal to number of weights
determined in update() (p.7) call. No check of the validity of supplied
scind(s) arrays is done.

The coefficients of multiplication of the indices in normal and generalized
modes to obtain the turbulence moments are already precomputed in up-
date() (p.7); the results become accessible after the function call by get-
val() (p.10) and geterr() (p.11). The atmospheric time constant is com-
puted given the desi parameter. If scind(s) or desi parameters are empty

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.1 atm Namespace Reference

13

(NULL or 0, respectively), the calculations for supplied not-NULL parame-
ters are only made.

The turbulence moments of the power k (see power list in update() (p.7))
are computed easily as a scalar product:

My, = (S - coefy)

Here the vector s of scintillation indices is composed of all non-shifted normal
and differential indices and shifted indices marked by ’1’ in atm::USESHFT.

The computed quantities are saved in the current line of the global storage
for further averaging by avgint() (p.15). This storage is enlarged automat-
ically once it is filled (initial size is atm::NMEAS (p. 19)).

Performance

One calculation of integrals takes 5 ms at PC P-1II 667 MHz.

5.1.2.10 double calcn2 (double * scind, double * scinds, double x*
e2scind, double x e2scinds, double zdist, char meth)

Parameters:
scind array of average non-shifted indices

scinds array of average shifted indices (may be NULL)
e2scind array of squared errors of scind
e2scinds array of squared errors of scinds

meth atm::FIXED: Use fixed-altitude layers restoration, atm::FLOAT:
search for four strongest layers

zdist zenith distance in [degree]

Returns:
Minimal chi-square reached, or ”bad” value on error

The profile restoration results in altitudes of the getnen2() (p.11) layers
altitudes getzcn2() (p.12) with strengths geten2() (p.12). Two methods
are implemented - the search for four strongest layers (if not isfized) and
the search for the intensity of six layers placed proportionally in the altitude
range with relative resolution 0.5.

Similarly to calcint() (p. 12), the vector s of scintillation indices is composed
of all non-shifted normal and differential indices and shifted indices marked
by '1’ in atm::USEWEIGHT (p.19). The length of vector is equal (by
definition) to the number of used weights Nuw.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.1 atm Namespace Reference

14

Both methods operate currently with only integer-number altitudes (i.e.
0,1,2...km). Meanwhile, the values of weight functions used for restoration
are taken not at these altitudes but at those corrected by secans(zenith
distance) factor.

Fixed layers method

Fixed layers are placed proportionally in altitude: 1, 2, 4, 8, 16 km. In
the generalized mode when shifted indices scinds are available, the ground
layer at Okm is added. Thus, Nlay=5 or 6 layers are fixed in the Cn2 profile
altitude grid z/] (see getzen2() (p.12)). The 5 or 6 free parameters are thus
these layer strengths.

The NR utility nr::powell() is used to minimize the merit function of the
argument vector y/Nlay/ used to produce the synthetic scintillation indices

s2(syn)

2 b 2 Nlay
“(syn)i (0bs)s) , where 2(syn) Zyl

MZ

i=0 8 2(obs);

Here the weight W is taken from the matrix created for the profile restora-
tion by update() (p.7). The argument y of the merit function is taken
quadratically to set the non-negativity constraint on the restored profile
strengths. Best fitted y-s are simply squared to produce Cn2-s (see getcn2()

(p.12)).
Floating layers method

The three trial layers are placed in all the possible combinations in a grid
with 1km spacing between the lowest fourth (fixed) layer and the maximal
altitude zmax (see init()). Minimal distance between layers is MINDH=1km.
Number of layers is thus Nlay=4; number of free parameters is 3+4=7. For
all trial combinations of layer altitudes, the direct method of the restoration
of the layers’ strengths is performed.

For this direct method, the weight matrix W/Nlay x Nw]| is composed from
the combined weight matrix produced in update() (p.7) by selecting the
needed columns corresponding to trial altitudes.

This matrix W is inversed with the help of SVD method nr::svdemp() (see
update() (p.7))

(W) ! = (V) - (diag(1/w)) - (UT)

Then the strengths corresponding to the trial layers are directly computed:

C2(sym) = Sobs - (W)™

Using these strengths instead of 2 in a merit function formulae (see above),
the chi-square quality of the restored profile with current trial altitudes is

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.1 atm Namespace Reference

15

computed. The combination of altitudes when this chi-square is minimal is
accepted and available by getzen2() (p.12) and getcn2() (p.12).

In both methods, the resulting strengths of layers are divided by se-
cans(zenith distance), to get the zenith-referenced result. Thus, the non-
zenith position is accounted for twice, in altitudes (see beginning of descrip-
tion) and strengths.

Performance

One restoration takes typically 45 ms at PC P-I1I 667 Mhz for the method
with 6 fized layers, and 140 ms for placing 3 floating altitude layers plus one
fixed.

No job is done if error is set (nr::erget() (p.81)).

5.1.2.11 const doublex geto_csi ()

Returns:
Pointer to residual scint.indices array where first Nidx elements are re-
lated to non-shifted indices and further go shifted indices (in generalized
mode)

This function returns the relative deviations of observed indices from re-
stored indices (normalized by observed indices) which correspond to just
restrored Cn2 profile. The deviations are located in a placeholder, which is
pointed by this function and which is deallocated by done() (p. 10). Do not
deallocate thus!

5.1.2.12 void avgint (double desi, double edesi, double zdist)

Parameters:
dest average DESI for shifted channel A

edest relative error of desi

zdist zenith distance in [degree]

Given the instantaneous integrals in their storage, their average values and
standard deviations are computed and put in respective global vectors. The
function sc::avgmatrix() (p.33) is used for averaging. Errors thus take
into account the correlation of values.

Then the average integrals are converted into atmospheric parameters - see-
ing, isoplanatic angle and effective altitude of turbulence. They are available
via getval() (p.10) and - relative errors - via geterr() (p.11). Also, the
atmospheric time constant is computed from provided desi and edesi values.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.1 atm Namespace Reference 16

Seeing is computed as

where the zero-moment Mo of the turbulence is:
My = / C2(h)dh

(integration goes from 0 for whole-atm. seeing and starting from
HBOUND for free-atm. seeing) and KS is the calibration constant.

Isoplanatic angle is computed as
Oy = KP)\G/5M5_/§/5 sec®5(z)
where the 5/3-th moment of the turbulence profile is:
My)s = /Cg(h)h5/3dh

and KP = (2.917%)73/% is the calibration constant.

Second moment of the turbulence is related to the differential astrometry
precision and the operation of optical interferometers. Unlikely the isopla-
natic angle, it is saved in files with no any calibration to any ”angle”.

The free atmosphere effective altitude is computed as
Zepf(free) = (My, [My,)"/F1=F2)
where {k1} is 5/3 and {k2} is 1.
The value of Heff in the whole atmosphere is computed by definition:
zeff(whole) = My /My

but only if the shifted indices are available.

The related to adaptive optics atmospheric time constant is computed
from Differential Exposure Scintillation Index (DESI) 0% as

rae = KT [op] ™"

where KT is the empirical calibration constant.

All the used integrals are corrected for non-zero position of the star before
conversion into atmospheric parameters. For this, they are divided by the
factor sec(y)¥*!, where v is the zenith distance zdist.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference 17

Note:
During the conversion of integrals into atmospheric parameters, the
integrals are checked to be positive. If at least one of integrals is invalid,
the error nr::ERNOD (p.84) is set which will block the writing of
results by write() (p.17) unless error is reset by nr::erreset() (p.83)
after avgint() (p.15) and before write() (p.17).

No job is done if error is set (nr::erget() (p.81)).

5.1.2.13 void write (FILE x f, const char x stamp, atm::what
what, bool header = false)

Parameters:
f FILE pointer

stamp leading word in the output line

what atm::ATMPAR (p.7): write atm. parameters,
atm::CN2PROF (p.7): write the Cn2 profile

header Write the header line instead of data

This utility writes the output results of atmospheric calculations on the disk.

For what==ATMPAR, the single line is written on disk, consisting of the
average atmospheric parameters each followed by its error. Parameters are
free seeing [”], seeing ["], isoplanatic angle [”], second moment of turbulence
[m”{4/3}], and atmospheric time constant [ms].

For what==CN2PROF, the Cn2-profile data line is written. It consists
of 1) the number of adjusted Cn2 layers, 2) Chi-square 3) the getncn2()
(p.11) altitudes of layers and each followed by it strength in [m”-2/3]. 4)
the seeing computed from the profile strengths

If header==true, the header line for respective what -selection is written in-
stead of data. stamp must then contain the name of data which are normally
written as a stamp when header==false.

No job is done if error is set (nr::erget() (p.81)).

5.1.2.14 void interpolate (double x z, double x intcn2, int nz,
double * zin = 0, double * ¢n2in = 0, int nzin = 0)

Parameters:
z the grid of altitudes to interpolate to [km]

intcn2 output array[nz] of interpolated cn2 values

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference 18

nz length of z/]

zin the grid of input altitudes (last computed profile by default)
cn2in the grid of input Cn2 strength (last computed profile by default)
nzin the length of zin/] and c¢n2in if not default

The system response ("PSFE”) for the thin turbulence influence is assumed to
be a Gaussian in a logarithm altitude domain with a 0.5 resolution. In case of
two "close” layers (e.g. fixed layers method with altitude modification factor
equal to 2), the linear interpolation is used. In other cases, the influence of
two adjacent PSFs are accounted for or of the one when all the layers are
above or below the current altitude z.

It is suggested to use this function with a proportional altitude grid z// (in
a logarithmic altitude domain) for the graphic representation of the Cn2
profile. The output array intcn2/] must be allocated before the function
call.

The default parameters are aimed to replace the last-computed Cn2 profile
data with other arrays zin, cn2in, both of the length nzin. This is needed
when re-drawing all the profile data on the display.

5.1.2.15 const charx getfmt (atm::ordint ¢) [inline]

Parameters:
t Integral ID

Returns:
C-format

5.1.2.16 const charx getname (atm::ordint ¢) [inline]

Parameters:
¢ integral sequential number atm::ordint (p.6)

The names atm::SEENAME ... atm: TAUNAME are returned; for ”whole
atmosphere” parameters - starting from the second character (first is ”7f’
(free)).

5.1.3 Variable Documentation

5.1.3.1 const bool atm::HEAD = true

Last (defaulted to ”"write data, not header”, i.e. "false”) parameter in
write() (p. 17)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference 19

5.1.3.2 const int atm::NMODE = 2

Number of modes: normal and generalized, hence = 2

5.1.3.3 const double atm:: MINRELW = 1e-3

Minimal ratio of the singular value to the maximal one

5.1.3.4 const int atm::MAXNBASE = 10

Maximal number of orthonormal functions to use in h-powers restoration:
(to apply after MINRELW based rejection)

5.1.3.5 const int atm::NMEAS = 256

Starting capacity of the integrals storage, measured in base-times per accu-
mulation time. After filling the storage, it is reallocated with NMEAS-more
capacity

5.1.3.6 const double atm::POWSEE = 0

Power of Cn2 moment for seeing

5.1.3.7 const double atm::POWISP = 5/3.

Power of Cn2 moment for isoplanatic angle

5.1.3.8 const double atm::POWEFF = 1.0

Power of Cn2 moment for Effective altitude

5.1.3.9 const double atm::POWISK = 2.0

Cn2 second moment power

5.1.3.10 const int atm::NPOWER = 5
Number of power laws to fit: 2 kinds of 0-th, 5/3-th, 1-st, 2-nd

5.1.3.11 const char atm::USEWEIGHT[NPOWER][2%10+1]

Initial value:

"11001000000000000000" ,

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.1 atm Namespace Reference 20

""10001000001000100000",
"11111111111100100000",
"11111111111100100000",
"11111111111100100000" }

Binary mask for using the weights: ”1”="use it”. Each line consists of the
normal weights mask and shifted weights mask concatenated. Now we thus
use all non-shifted and As, Bs and ABs weights for all powers.

5.1.3.12 const char atm::FITSCIND]]

Initial value:

"11111111111100100000"

Binary mask for fitting the particular indices with Cn2 model. As a rule,
all the non-shifted and two least size shifted indices must be satisfied.

5.1.3.13 const double atm::HBOUND = 1.0

Height of the boundary layer [kilometers] to fit the Cn2-integral for free
seeing (h"0 in integral is forced to resemble the AB-pair weight function
below this height)

5.1.3.14 const double atm::KS = 1.73588e+-07
Calibration constant in seeing formula (AstL 45, p.399): seeing[’] = KS *

A;flfSMS/E’ * sec”!(z), where lambda_eff is in [mkm)]

5.1.3.15 const double atm::KP = 0.000756348

Calibration constant in isoplanatic angle formula (AstL 45, p.399)
6o]"] = KP x (M5/3/)\sz)*3/5 % sec®5(z), where KP = (2.905 * (2r)? x
(MK M2M)~2)=3/5 « 206265

5.1.3.16 const double atm:: KT = 0.175

Atmospheric time constant empirical calibration constant for DESI for 1,3ms
integrations in diameter=2cm apertures with -1km shift

5.1.3.17 const double atm::DZCN2 =1

Cn2-profile restoration weight matrix altitude spacing: 1lkm (non-
fractional!)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference 21

5.1.3.18 const char atm::ERRFMT[] = ”%s%7.3f”

The relative error format (same as in scind.hxx) with a leading ”%s” for a
delimiter (length corresponds to the length of longest accuracy heading)

5.1.3.19 const char atm:: ANGFMT|[] = ”%s%5.2f”"

Seeing and Isoplanatic angle [arcsec] format (with leading delimiter’s %s)

5.1.3.20 const char atm::HEFFMT[] = ” %s%5.0f”
Effective altitude [m] format (with leading delimiter’s %s)

5.1.3.21 const char atm::TAUFMT|[] = ” %s%5.2f’

Atmospheric time constant format (with leading delimiter’s %s)

5.1.3.22 const char atm:: ATMDLM[] =" ”

Delimiter of entries in the atmospheric data output file

5.1.3.23 const char atm::CHI2FMT|] = ” %s%6.2f”

Chi-square writing format (with leading delimiter’s %s)

5.1.3.24 const char atm:: ALTFMT|[] = ” %s%4.1f”

Altitude of layers record format with a leading ”%s” for a delimiter

5.1.3.25 const char atm::CN2FMT|[] = ” %s%8.2e”

Cn2-Profile values and second turbulence moment format (with leading de-
limiter’s %s)

5.2 sc Namespace Reference

Declarations of all functions and constants to handle scintillation indices.

Enumerations

e enum scwhat { DSI, DESI, AFLUX, AFLUXP, MOM }

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference 22
Functions

e int napcomb (int a)

e const char * apername (int nchan, int index)

Return the name for a given index of entrance aperture or combination
of apertures.

e int ind_seqnum (int nchan, const char xname)

Return the sequential number of index in storage by its name (ID).

e void init (int maxndata, int maxnmeas, int nchan)

Initialize the structures to put the scintillation indices.
e void chan_init (int chan, double bkgr, double deadtime=-1, double
nonpois=-1, count_t *data=0)
Initialize channel data in static channel array element.

e void compute (int ndata, int xncorr, double microexp, bool isgen)
Compute the normal and differential (aperture and exposure) scintillation
indices.

e int getcurmeas ()

Get the number of measurements done in a current accumulation time.

e void again ()

Reset the counter of accumulated indices in local index storages.

e void done ()

Deallocate the memory reserved for module index storages.

e void write (FILE «f, scwhat what, const char *stamp, const char

xsuffix=0, bool header=false)
Write the latest instant indices or count moments to the disk.

e void avgmatrix (double x*matrix, int ncol, int nrow, signed char

xrowselect, signed char select, double xavg, double xerr2, int lag)
Average a matriz of values along the second dimension with row selection.
e void average (bool isgen, int lag)

Average scintillation indices and compute their squared errors.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2

sc Namespace Reference 23

void writeavg (FILE «f, scwhat what, bool isgen, const char xstamp,
const char ssuffix=0, bool header=false)

Write the average (accumulation-time related) indices or channel fluzes
on the disk.

double getidx (int meas, scwhat what, int i)

Get the instant index value.

double x getidxptr (int meas, scwhat what)

Get pointer to the array of instant scintillation indices.

double getavgidx (scwhat what, bool isgen, int i)

Get the averaged index value.

double x getavgidxptr (scwhat what, bool isgen)

Get pointer to the array of average scintillation indices.

double geterridx (scwhat what, bool isgen, int i)

Get the relative error of the average indez.

double x geter2idxptr (scwhat what, bool isgen)

Get pointer to the array of squared errors of average scintillation indices.

double getmean (bool iscor, int i, int meas=-1)

Get the mean count in the channel in [counts per ms].

double getavgflux (bool isgen, int i)

Get the average fluz in the channel in [counts per ms].

double geterrflux (bool isgen, int i)

Get the relative error of the average flux in channel.

double getsig (int lag, int i)

Get the second moment of counts in channel in [(counts per ms)"2].

void stattest (int ndata, double microexp)

Compute the expected scintillation indices for the results of the MASS
statistical test.

void statflux (int ndata, int sncorr, double microexp, int k,
bool isfilt=false, double *nonpois=0, double xavgflux=0, double
xer2flux=0)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference

24

Recurrence computer of average fluzes and their squared errors from the
count series in channels.

e int fluxprec (double flux, int maxprec=sc:: FLXPREC)
Return the decimal digits number for the FLUX representation.

Variables

e const
e const
e const
e const
e const
e const
e const
e const
e const
e const
e const
e const
e const

e const

int DESIBIN = 3
char ERRFMT [] = " %s%8.3f"

[
char IDXFMT [] = »%s%7.4f"
char IDXDLM [] = * 7
char FLXFMT [] = *%s%6.+f"
int FLXPREC = 3
char FLXDLM [] = * 7
char PFMT [] = " %s%5.3f"
char MOMFMT [] = " %s%7.0

char MOMDLM [] =" *
int MODENORM = 0
int MODEGEN = 1

int MODENO = -1

int MAXLAG = 0

5.2.1 Enumeration Type Documentation

5.2.1.1 enum sc::scwhat

Enumeration of entities to access or write on the disk, to use in get...() and
write...() functions.

Enumeration values:
DSI Aperture indices writing (with DESI) or access

DESI
AFLU
AFLU

Differential exposure indices access
X Average flux in channels access or writing

XP Average flux with non-Poisson parameter in channels writ-

ing

MOM

Count moments writing

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

25

5.2.2 Function Documentation

5.2.2.1 int napcomb (int a) [inline]

Formula to get a Number of entrance apertures and their non-redundant
combinations having a apertures

5.2.2.2 const charx apername (int nchan, int index)

Parameters:
nchan number of apertures

tndex sequential number of aperture

Returns:

pointer to name if Ok, or ””

if invalid index

Name of an aperture corresponds to the given index according to convention:
For index=0..nchan-1: name="A’"B’,... (for normal indices of scintillation
in a single aperture); for index=nchan: name="AB’ (first combination of
apertures), nchan+1: "AC’,....”BC’,BD’ and so on.

This name is copied in the static character string which contains 3 characters
(two for the combination and one for trailing zero) and returns the pointer
to this string. Thus, if more than one call to this function is done in one
statement, the result is unpredictable.

5.2.2.3 int ind_seqnum (int nchan, const char x name)

Parameters:
nchan number of channels

name ID of an aperture or the combination of apertures (e.g. "B” or
” AD?'/)

Returns:
sequential number in range [0..napcomb() (p.25)-1] or -1 on error (er-
ror is set with nr::nrerror() (p.83) then)

This function is needed to access certain indices with getidx() (p.36),
getavgidx() (p.36) and geterridx() (p.37) to compute their last parame-
ter by the index "name”.

See also:
apername() (p.25)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

26

5.2.2.4 void init (int mazndata, int maxnmeas, int nchan)

Parameters:
mazndata Maximal expected number of counts in base time series
(one simultaneous measurement of nchan channels)

maxnmeas Maximal expected number of measurements (ac-
cum.time/base.time) to keep in the storage

nchan Number of channels (entrance apertures)

The module contains the global arrays which keep the normal, differential
aperture and differential exposure indices computed for all apertures. These
are the matrices in which the rows contain the simultaneously obtained
indices for one particular base time.

For the sake of a simple code structure, some intermediate data processing is
done in advance to calculation of indices itself. For this and for acceleration
of logarithmic indices derivation, some work arrays are also allocated.

The dimensions of allocated arrays are determined by the numbers mazn-
data, marnmeas and nchan which are copied in global variables which are
private to the module. Another private global variable counts the performed
index calculations and initialized to zero here. The number of counts in any
subsequent base-time series should not exceed the value of the parameter
mazndata; the same for the measurements number (base times per accumu-
lation time) which should not exceed the parameter maznmeas.

This function should be called, obviously, before the first calculation of in-
dices.

Attention:
In addition to init() (p.26) call, ALL the members of (private to mod-
ule) channel parameter structures should be initialized by nchan calls
to chan_init() (p.27) made after the call to init() (p.26).

If the parameters specify the storage dimensions which are less than that
which were previously allocated, the storages are left unchanged.

Note:
This function must be kept in strict sync with compute() (p.27).

See also:
chan_init() (p.27) compute() (p.27) done() (p.31)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

27

5.2.2.5 void chan_init (int chan, double bkgr, double deadtime =

-1, double nonpois = -1, count_t * data = 0)
Parameters:
chan sequential number of the channel (0,1..maxnchan-1) (see init()
(p.26))

bkgr background level in [counts per units of microezp parameter in
compute() (p.27)]

deadtime non-linearity parameter (the dead-time of PMT) in the same
units as the microezp parameter in compute() (p.27), e.g. for
[sec] it is about (20-30)1e-9

nonpots non-poisson factor (around unity)

data pointer to the buffer - receiver of channel PMT counts

Function initializes the chan-th channel with the given parameters.

Attention:
This channel data are expected to be allocated by the call to init()

(p. 26).

The assignment is made only if the respective parameter has a sense: non-
negative for double-type parameters and non-null for the pointer. Thus, a
single all-initializing call may be split into a sequence of calls which initialize
(or update) some particular members (e.g., changing the non-linearity and
background level in the channel) leaving the rest non-sense or default.

Note:
No memory allocation is done here for data[] array, it is only pointed
to the buffer already allocated for receiving the channel counts.

See also:
init() (p.26)

5.2.2.6 void compute (int ndata, int * ncorr, double microezp,
bool isgen)

Parameters:
ndata Actual number of counts in the channel buffers (equal for all
channels)

ncorr array of numbers of corrected counts in channels (replaced with
mean if missing)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference 28

microexp Exposure time of each count (micro-ezposure) to scale
the non-linearity parameter and background in calculations (see
chan_init() (p.27))

tsgen Generalized mode flag

This is the main utility in the module SCIND.

The parameter ndata must not exceed the value mazndata with which the
init() (p.26) was called; ncorr[chan] collects the number of counts in re-
spective channel chan which are replaced with the mean value due to the
data loss in a line.

This utility computes a set of all instantaneous (i.e. determined using indi-
vidual PMT counts obtained during the base time) scintillation indices (SI)
which can be derived for a given number of channels. Thus, both normal
and differential indices (DSI) are calculated.

The implementation of this function depends on the LOGIDX compilation
option: if it’s set, then the "true” calculations of variations of logarithms of
counts is implemented; otherwise - the relative differential approximation is
used. Here below we refer to these alternative modes of implementation as
"if LOGIDX™.

Calculations of scintillation indices go through the following steps:

e compute the “raw” means of counts T ;
e if LOGIDX, compute logarithms of all individual counts and their
means;

e calculate the dispersions and auto-covariances (lag=1,2) of counts (or
- if LOGIDX - of their logarithms) z :

1 N—k

e l__ ; __’ k:0,1,2
N_ k _Ncorr ; ($ $)($l+k l‘)

ok ()

where Ngyrr is a number of pixels in the channel which were replaced
with mean T due to the loss in the line (see below);
e calculate the cross-covariances of counts z and y of all combinations
of channels with lags 0 and 1:
1 1 N—1
poley) = =D (@D (yi~9) . pay) = s D (@—T) Yir1=7)+H(zi1—T) (4 —7),
N = 2(N -1 i=1
Note that the second formula is symmetric;
e if LOGIDX, de-normalize the dispersions and auto-covariances: mul-

tiply them by the squared mean count and by the product of mean
counts in two channels, respectively ;

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference

e correct dispersions, covariances and mean counts for non-linearity of
PMT L=deadtime/microezp :
o*(z)

Teorr = E(l‘i‘Lf) , O'2 (I) = ,O(fL'y)

corr

m , Peorr(zY) = (

e compute scintillation indices free from photon noise (using non-Poisson
factors P for conversion of means into photon noise dispersion) and
influence of background B=bkgrsmicroexp, corrected to zero-exposure:
normal and cross-channel (differential):

1.5(c3(z) —TP) — 0.50%

1 - 2L7)(1 - 2L7)

1.5p9(zy) — 0.5p1 (zy)

s*(z) = s”(zy) = s*(2)+s(y) -2

(T — By)? ’
Here already the non-linearity corrected means, dispersions and co-
variances are used ;

e compute DEST for all channels, using auto-covariances with lags 0 (i.e.
dispersion), 1 and 2.

02 — 4g2
Hle) == <3s2<x) + 2 §)>

See “Multi-Aperture Scintillation Sensor. Final design report”, Appx. C
(p.87).
Note on ncorr/]:

The counts from channels sometimes miss a certain number of data due to
the data loss in the line. In this case, the "data provider” is supposed to
replace them with the average count in respective channel. Thus, ncorr[] is
used only to correct the dispersion of counts, by decrement of the number
of data in calculations.

The order of indices in which they are assigned to the elements of an output
array (written to the file or exported by getidx() (p.36)) is exactly the
same as the order of weights in the weight matrix which is computed in the
module WEIF: first normal indices, then the covariance of the first channel
data with the second, with the third etc..., then the covariances of the second
channel with third etc. See sc::apername() (p.25) and sc::ind_seqnum)|)
(p. 25).

Performance:

The test consists of calculation of scintillation indices for 4 channels includ-
ing the DESI calculations for all channels. It takes:

e In relative approximation of indices (normalized dispersion or covari-
ance): 1.7ms at P-IIT 667 MHz,

(T — Ba)(y — By)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference 30

e In true logarithmic form (LOGIDX definition set): 3ms at P-III 667
MHz,

The list of features:

e the resulting indices in scind are already corrected to zero-
exposure;

e The code assumes the background level and non-linearity parameter
to be scaled to the micro-exposure time used for the count series. E.g.
if the count (micro)exposure is 1ms, then the background level of 30
cnt/s should be set as bkrg=30%0.001=0.03; deadtime of PM of 20ns
- as nonlin==20ns/0.001s=2e-5.

e Program currently refuses to process simultaneously the count sets
which have different lengths;

e The pre-allocated arrays mean, cmean, sig are used to store the results
of statistical calculations. They contain, respectively: mean counts
and means corrected for non-linearity, dispersions and covariances of
counts corrected for non-linearity. Note, that, the i-th element of the
dispersion/covariance array addresses the same channel or combina-
tion of channels as i-th element of the scintillation index array. The
global arrays r1 and r2 are also used and are accessible similarly to

84g.

The results of index calculations are put in the current measurement’s row
(see getcurmeas() (p.30)) of the local index storing matrices.

The calculations are made irrespective of isgen parameter of this function.
This parameter is only saved in additional local storage to be able to disen-
tangle the normal and generalized data while averaging the indices.

Before exiting and upon the success of calculations, the counter curmeas
of the performed measurements is incremented. If the value of curmeas
equals or exceeds the declared in init() (p.26) maximal number maznmeas
(the length of allocated storages for indices), then the error sc::EROFL is
returned and no calculation is done.

5.2.2.7 int getcurmeas ()

Returns:
measurement number

Example: if again() (p.31) was just used, the function will return ”0” since
no measurement were done up to now.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference

31

5.2.2.8 void again ()

Once the indices in the private module storages are not needed any more
(averaged, displayed and saved to disk), the counter of current row in them
should be reset to avoid the matrices overfill.

See also:
write() (p.31) average() (p.34) init() (p.26)

5.2.2.9 void done ()

This function releases the memory which is allocated for index storages by
init() (p.26).

This function should be called only to end with calculations at all, since the
modifications of arrays may be done by the calls to init() (p.26) with no
intermediate done() (p.31).

Note:
This function must be kept in strict sync with init() (p. 26).

5.2.2.10 void write (FILE x f, scwhat what, const char x stamp,
const char x suffiz = 0, bool header = false)

Parameters:
f Disk file structure pointer

what DSI: write the last obtained index set (both (D)SI and DESI),
MOM: write count moments

stamp Reference string of Mode/UT to put in the first column (if
!header) or its column name (if header)

suffiz Last-field string of a general purpose. Will be put after the last
index value or last word of the header. By default - nothing to
put.

header Write header line instead of data

Function writes the last computed indices or moments on the disk in one
ASCII line. The first token in the line is the reference stamp (which,
e.g., contains the comment symbol ”# 7, Normal/Generalized mode symbol
"N/G ” and some word with the UT hour).

o if what==sc::DSI:

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

32

If header is true, the header is created like follows:

<stamp (name)> SI(A) SI(B) .. DSI(AB) DESI3(A4) ..

where SI relate to normal indices, DSI - to differential indices, DESI3 are
differential exposure indices with smoothing 3-element window. Header line
is kept in sync with what is written in data-writing mode (header==false)

For writing the index values, the format IDXFMT is used. Numbers are
delimited with IDXDLM. The header-writing call is only possible after the
init() (p.26) was called; data-writing is allowed after at least one com-
pute() (p.27) call.

The index set is written in one line, which has a structure corre-
sponding to that given in the header: stamp, Nchannel normal indices,
napcomb(Nchannel)-Nchannel differential indices, and finally Nchannel dif-
ferential exposure indices (DESI).

o if what==sc::MOM:

If header is true, the header is created like follows:

<stamp (name)> MEAN(A) MEAN(B)... SIG(A) SIG(B) .. COV(AB) ... COV1i(A) ... cCOV2(A) ..

where SIG relate to dispersions and COV to covariances of channels and to
auto- and cross-covariance of the signal in channels with lag 1 and 2.

For writing the moment values, the format MOMFMT is used. Numbers
are delimited with MOMDLM. The header-writing call is only possible af-
ter the init() (p.26) was called; data-writing is allowed after at least one
compute() (p.27) call.

As a last field for both what-selections, the suffiz string may be printed. In
MASS Software it is an optional address record to link the instantaneous
index values with the count series data in the count-file from which they
were derived.

e This function must be kept in strict sync with compute() (p.27).
e The write() (p.31) must not be called if again() (p.31) was already
called after the compute() (p.27) call.

See also:
init() (p.26) compute() (p.27) again() (p.31)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

33

5.2.2.11 void avgmatrix (double *xx matriz, int ncol, int nrow,
signed char * rowselect, signed char select, double * avg, double *
err2, int lag)

Parameters:
matriz matrix[nrow|[ncol] of values to average along second dimension
(i.e. to obtain an average row). Meanwhile, if ncol==1, matriz is
interpreted as a vector to be averaged into one number.

ncol number of columns in matriz/][]

nrow number of rows in matriz/][]

rowselect row selection vector[nrow/ (set NULL to select all)

select selection value in rowselect (no matters if rowselect==NULL)
avg vector[ncol] of resulting average values (one value if ncol==1)

err2 vector|[ncol] of resulting squared errors of avg.values (one value if
neol==1)

lag maximal lag in correction of error for the correlation of values

The rows are selected for averaging from the storage matriz by comparison
of respective values in rowselect with select up in a range of the storage row
numbers [0..nrow-1]. Average value is thus derived for each column for rows
with index row complying the rowselect[row/==select condition.

Errors of average values are computed corrected for correlation of values as
given in Korn & Korn ”Spravochnik po matematike” 4th edition, section
19.8 with lag of auto-covariance up to lag:

1 lag k
ey |-)

where the pj is the covariance of values z with the lag k and o2 is the
dispersion of values

| Nk | N
_ — 2 —\2
pe(®) = ;(fﬂi—w)(ﬂﬂﬁk—ﬂf), UxZ—N_ll;(ﬂEi—I)

If a given lag is more than nrow, the maximal lag is taken as nrow-1.

See also:
average (p. 34)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

34

5.2.2.12 void average (bool isgen, int lag)

Parameters:
tsgen flag that the generalized mode was used

lag Maximal counts lag to account for the index correlation in the error
of mean (MAXLAG may be set)

This utility is called normally after accumulation time span during which
rows of the index matrices are computed getcurmeas() (p. 30) times times.
It is aimed to obtain some mean value of each index or, in other words,
to implement the averaging of the index storage along its time-dimension.
Also, the squares of uncertainties of these indices are assessed.

The computed average indices, average shifted indices, and DESIs (both nor-
mal and shifted) are put in the global vectors, to be accessed by getavgidx()
(p.36) and geterridx() (p.37). Note, that the errors are computed and
stored squared absolute errors, meanwhile the latter function returns the
relative index value.

The utility avgmatrix() (p.33) is used for averaging all the storages.

Note:
To the moment, the average index itself is a simple mean with no re-
jection; it can in principle be implemented as a mean with rejection or
as a median.

5.2.2.13 void writeavg (FILE x f, scwhat what, bool isgen, const
char x stamp, const char x suffix = 0, bool header = false)

Parameters:
f Disk file structure pointer

what DSI: write the average indices, AFLUX: write the average chan-
nel fluxes, AFLUXP: write the average channel fluxes with non-
Poisson values

itsgen ”"false”: write non-shifted values with errors, "true”: write
shifted values with errors

stamp Reference string to put in the first column

suffiz Last-field string of a general purpose. Will be put after the last
number in a line or after the last word of the header. By default -
nothing to put.

header Write header line instead of data

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference 35

Function writes the average values computed by average() (p.34) and their
errors on the disk in one ASCII line. The first token in the line is the
reference stamp (line prefix and UT normally).

For writing the index values and their errors, the format IDXFMT is used;
numbers are delimited with IDXDLM. For writing the fluxes and their errors,
the format FLXFMT is used; numbers are delimited with FLXDLM; the
non-Poisson parameter P has a fixed format " %6.4f”.

The set of values is taken from shifted or non-shifted parts of storages,
according to the parameter isgen.

The values are written in one line, which has the following structure:
e if what==DSI.

stamp, average normal and differential indices for all channels and their
combinations, each followed by its error and average differential exposure
indices (DESI) each followed by its error.

o if what==AFLUX:
stamp, the average fluxes each followed by its error, for all channels.
o if what==AFLUXP:

the same as for AFLUX, but each flux error is followed by the channel non-
poissonity parameter from the channel structure (see chan_init() (p.27)).
It is supposed that this parameter is updated by statflux() (p.41) with
non-default nonpois parameter before.

As a last field, the suffiz string may be printed, similarly to write() (p.31).
This option is added to make it possible to save the individual MASS counts
in test modes, e.g. the Detector Test. The suffix may thus contain the
optional address to link the obtained data with the count series data in the
count-file plus the number of base-time series which results were averaged
and which count buffers are written starting from this address.

Note:
This function must be kept in strict sync with average() (p.34).

See also:
init() (p.26)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference 36

5.2.2.14 double getidx (int meas, scwhat what, int 1)

Parameters:
meas Measurement (row number of the index matrix)

what 0 for usual index, 1 for DESI

¢ index of channel or combination of channels [0..napcomb() (p. 25)-1]

Returns:
the index or some bad number on error

One may use getcurmeas() (p.30)-1 for the parameter meas, to return the
last obtained measurement result. Indices are ordered in the returned vector
as specified in apername() (p.25) documentation; the length of vector is
napcomb(Nchannel) or Nchannel for what==1 (i.e. DESI).

5.2.2.15 doublex getidxptr (int meas, scwhat what)

Parameters:
meas Measurement (row number of the index matrix)

what DSI: for usual index, DESI: for DESI

Returns:
pointer to the array of indices or to some bad number on error

This function is needed for atm::calcint() (p. 12)

See also:
geter2idxptr() (p.38)

5.2.2.16 double getavgidx (scwhat what, bool isgen, int 17)

Parameters:
what DSI: for usual index, DESI: for DESI

tsgen 0 for array of non-shifted average indices; 1 for shifted indices

¢ index of channel or combination of channels [0..napcomb() (p. 25)-1]

Returns:
averaged index value or some bad number on error

The call with isgen==true is only possible if generalized mode was used
during the last accumulation time.

See also:
getidx() (p. 36)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference 37

5.2.2.17 doublex getavgidxptr (scwhat what, bool isgen)

Parameters:
what DSI: for usual index, DESI: for DESI

tsgen "false” for array of non-shifted average indices; ”true” for shifted
indices

Returns:
pointer to the array of the average indices or to some bad number on
error

This function is needed for atm::calen2() (p.13).

See also:
geter2idxptr() (p.38)

5.2.2.18 double geterridx (scwhat what, bool isgen, int 1)

Parameters:
what DSI: for usual index, DESI: for DESI
isgen "false” for array of non-shifted average indices; ”true” for shifted
indices

¢ index of channel or combination of channels [0..napcomb() (p. 25)-1]

Returns:
relative error of the average index or some bad number on error

If the stored value of the index squared error is positive, then the ratio of the
square root of this squared error to the index value is returned; otherwise 0
is returned.

Note:
The squared error may, in principle, be negative due to the wrongly
accounted correlation of values in avgmatrix() (p. 33)

See also:
getavgidx() (p. 36)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference

38

5.2.2.19 doublex geter2idxptr (scwhat what, bool isgen)

Parameters:
what DSI: for usual index, DESI: for DESI

tsgen "false” for array of non-shifted average indices; ”true” for shifted
indices

Returns:
pointer to the array of the errors of average indices or to some bad
number on error

This function is needed for atm::calen2() (p. 13).

Attention:
The internally stored array of average index errors contains the squared
errors of indices computed by avgmatrix() (p. 33). These are the values
returned here and needed for the Cn2-profile restoration. Meanwhile,
the result of geterridx() (p.37) is a relative error of index.

See also:
getavgidx() (p.36)

5.2.2.20 double getmean (bool iscor, int i, int meas = -1)

Parameters:
tscor "false”: return the raw mean; "true”: return the non-linearity
corrected mean

¢ index of channel [0..Nchan-1]

meas Measurement number in [0..sc::getcurmeas() (p.30)-1], for is-
cor==true only. Last value is returned by default.

Returns:
mean count in channel during the last base time [counts per ms]

5.2.2.21 double getavgflux (bool isgen, int i)

Parameters:
isgen "false”: mnon-shifted average counts; ”true”: shifted average
counts

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference 39

¢ index of channel [0..Nchan-1]

Returns:
average flux in channel [counts per ms]

Average fluxes are obtained in average() (p.34).

See notes to getidx() (p. 36).

5.2.2.22 double geterrflux (bool isgen, int 17)

Parameters:
tsgen "false”: mnon-shifted average counts; ”true”: shifted average
counts

¢ index of channel [0..Nchan-1]

Returns:
relative error of average flux in channel

Average fluxes are obtained in average() (p.34).

The ratio of the square root of the flux squared error to the flux value is
returned.

See notes to geterridx() (p.37).

5.2.2.23 double getsig (int lag, int i)

Parameters:
lag 0: simple dispersion (index<Nchannel) or covariance of counts (for
returned array index more or equal to Nchannel); 1,2: the same
with lag=1,2 counts

¢ index of channel or combination of channels [0..napcomb() (p. 25)-1]

Returns:
the moment value (dispersion or auto/cross-covariance)

5.2.2.24 void stattest (int ndata, double microezxp)

Parameters:
ndata Number of counts in the channel buffers (equal for all channels)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference

40

microexp Exposure time of each count (micro-ezposure) to scale
the non-linearity parameter and background in calculations (see
chan_init() (p.27))

This is the second utility (after compute() (p.27)) which deals with the
channel count series.

MASS statistical test is performed using the specially modulated flux from
the control LED. The current through the control LED is modulated step-
like synchronously with the counting time diagram with a period of four
micro-exposures. During each first and third takts of this modulation the
current is at the middle level, whilst at the second and the fourth takts it is
increased and decreased, respectively, relative to this middle level.

The task of this utility is to determine these middle, increased and decreased
light levels and to compute the (”theoretical”) expected scintillation indices
(SI) and DESI which correspond to this modulation (see compute() (p.27)):

1.50% — 0.5p; 2 p2 — 4p1
2 2 2

Sy, = , so(de)y, = = (33 +

h fluw2 9 h fluw2

Here, for the specified way of modulation, the dispersion and auto-
covariances with lags 1 and 2 are calculated as

s 203+ AL+ A2 Ao(Ay +AL) AR+ ALAL
7= 4 Ty ey

and Deltas with subscripts 707, 7+” and ”-” are the deviations of the middle,
increased and decreased light levels, respectively, from the average level.
Middle level may differ from average level if the positive and the negative
variations are different in magnitude.

The averaged levels are corrected for non-linearity using the channel pa-
rameters set by chan_init() (p.27) and the supplied micro-exposure time
microezp. No correction for background is made.

The call of this utility implies that the module is initialized with init()
(p.26) the same way as for usual measurements with compute() (p.27).
Since, normally, the compute() (p.27) is also started on the same count
series, the capacity nmeas of the index storage must be doubled while
calling init() (p.26) before the statistic test evaluation. It is assumed that
no corrected data are present in the series (as if ncorr array in compute()
(p.27) contained zeros). So, damaged series should not be fed to stattest()

(p.39).

The expected values of indices are put in the index storage in the same way
as compute() (p.27) does. Since the flux modulation is the same in all the

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

41

channels of MASS, cross-channel differential indices measured during the
test (by indices()) are set to zero.

Note:
The "mode” set for the computed expected indices in the index storage
is set to sc::MODEGEN (p. 45) to allow the simple averaging of them
similarly to the case of the generalized mode measurements. Thus, the
averaging of statistic test results must be done with average() (p.34)
with the first parameter true .

5.2.2.25 void statflux (int ndata, int * ncorr, double microezp,
int k, bool isfilt = false, double * nonpois = 0, double * avgflux =
0, double * er2fluz = 0)

Parameters:
ndata Actual number of counts in the count series stored in the channel
buffers (equal for all channels)

ncorr array of numbers of corrected counts in series (i.e. replaced with
mean of series if missing)

microexp Exposure time of each count (micro-exposure) to scale the
non-linearity parameter and fluxes in calculations (see chan_init()

(p.27))

k sequential number of current channel series in the measurement ses-
sion (i.e. this call is k-th to measure the statistics stored in awvg
and er2)

isfilt To account for the long-term modulation of the signal (clouds,
etc.) in dispersion sig

nonpotis non-Poisson parameters array[0..Nchan-1], by default - not
computed

avgfluxr Average flux array[0..Nchan-1], by default - the local storage
accessible with getavgflux() (p. 38)

er2fluxz Squared absolute error of flux: array[0..Nchan-1], by default -
the local storage accessible with geterrflux() (p.39)

This is a third utility (after compute() (p.27) and stattest() (p.39)) which
deals with the channel data series. It is suited for calculation of the average
flux in a channel and its error. Counts are assumed to be non-correlated, so
the squared error of average is kxndata times less than the count dispersion.

The results are put in the global module storage of average fluxes (or other
place if last two or three parameters are not defaulted) or updated there on

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference

42

calls with k>1 (see below). They are permanently available with functions
getavgflux() (p.38) and geterrflux() (p.39) after the first call with k=1
(unless the parameters avgfluz and er2fluz are specified explicitly). It is
assumed that the storages for an average flux and its dispersion are allocated
with init() (p.26).

For any call to the function, the average count and its dispersion for a current
series are computed like follows (hereafter n stays for ndata parameter value):

1 n—1
data = — Z datali],
™o

1 n—1
Odata = —— Z(data[i] — data)?

n—1:=

Here all the counts in channels are actually used corrected for non-linearity
individually using the channel parameter deadtime initialized by chan_init()

(p.27):

datali] = datayew(i](1 + data,ewli] X deadtime/microexp)

Note:
The deadtime-parameter must be set to zero in chan_init() (p.27)
before making statflux() (p.41) for determination of the non-linearity
of detectors itself. It should be noticed also that the background level in
channels is ignored (assumed zero). Detector non-poissonity is evidently
not taken into any account but is computed and updated in channels if
nonpois is provided as non-null.

This utility may be used either as a plain average and its error computer or
as a tool for calculation of the statistics of a long series consisting of multiple
data pieces (base-time series). In both instances, the first call to the utility
must have k=1. If so, the average flux values and their errors in flux storages
are assumed to contain no information about the previous data series. Then
they are assigned from the average count and its dispersion like follows:

data o
avgfluxr = —— , er2flux = %
microexp n X Microerp
that means that we express the average flux and its error y/er2fluz in

[counts per unity of micro-exposure].

When one wishes to obtain the statistics of a continued series of counts
(base-times of the same accumulation time, i.e. with the same source of the

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.2 sc Namespace Reference 43

signal), the values in avgfluz and er2fluz obtained in a previous $(k-1)$-th
call to statflux() (p.41) are back-converted into the non-normalized counts
avgcount and their dispersion er2count:

avgeount = avg fluxxmicroexp , er2count = er2fluzxn(k—1) xmicroezp?

and updated with a current k-th series statistics like follows:

1 _
avgeountyey = % ((k — 1)avgcount + data) ,

1
er2countpey, = — ((k — 1)er2count 4+ o4qie) + Corr
k

where the correction Corr = (k—1) X (avgcount e, — avgcount)? of the dis-
persion for the low-frequency modulation of the average count is computed
and added if isfilt==false. Note, that k must be incremented by user.

If the parameter nonpois is not null, then the estimate of the non-poissonity
of the detector is computed for each channel as:
) er2count
nonpois = ———
avgcount
Before exiting the function, the updated parameters are again converted
into the flux units similarly to the formula given above:

avgcount sigcount

avg fluxr = er2flur =

MICroeTp n X k X microexp?’

Note:
The output results are saved in the module average flux storages even
if the avgfluz/] and er2fluz[] place-holders are explicit parameters.
This allows to write the last obtained accumulated statistics with
writeavg() (p.34) and access them with getavgflux() (p.38), geter-
rflux() (p.39).

Attention:
The confusion may occur on the meaning of the parameters saved in
er2fluz. This is the storage for the squared absolute error of average
flux; meanwhile the value returned by geterrflux() (p.39) is a relative
error of flux.

5.2.2.26 int fluxprec (double fluz, int mazxprec = sc::FLXPREC)
[inline]

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.2 sc Namespace Reference 44

Parameters:
Sflux flux value

maxprec maximal number of decimal digits

Returns:
precision to use in *printf() functions with formats like ” %6.x{”

5.2.3 Variable Documentation

5.2.3.1 const int sc::DESIBIN = 3

Smoothing window width in DESI calculations. Used implicitly in com-
pute() (p.27))

5.2.3.2 const char sc:ERRFMT|[] = ”%s%8.3f”

Format of the relative error of any value output in the file with a leading
"%s” to insert a delimiter. Length comes from the length of a longest
heading

5.2.3.3 const char sc::IDXFMT[] = ”%s%7.4f”

Index writing printf-format in the file with a leading ” %s” to insert a delim-
iter. Possible ”-”-sign is accounted.

5.2.3.4 const char sc:IDXDLM[] =" »

Index file delimiter

5.2.3.5 const char sc:FLXFMT|[] = ” %s%6.xf”

Average flux per micro-exposure writing printf-format in the file with a
leading " %s” to insert a delimiter. MUST include the precision as s’

5.2.3.6 const int sc::FLXPREC = 3

Flux accuracy: maximal number of decimal digits (see fluxprec() (p. 43))

5.2.3.7 const char sc::FLXDLM[] = ” ”

Average flux delimiter in file

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference 45

5.2.3.8 const char sc::PFMT|[] = ”%s%5.3f”

non-Poissonity parameter writing printf-format in the file with a leading
"%s” to insert a delimiter

5.2.3.9 const char sc::MOMFMT|] = ”%s%7.0f”

Moments (means, covariances) writing printf-format in the file with a leading
"%s” to insert a delimiter

5.2.3.10 const char sc:MOMDLM|[] = ”

Moment file delimiter

5.2.3.11 const int sc:MODENORM = 0
Not-shifted flag isgen in average() (p. 34)

5.2.3.12 const int sc:MODEGEN =1
Shifted flag isgen in average() (p.34)

5.2.3.13 const int sc::MODENO = -1

Initial mode: unknown in isgen]]

5.2.3.14 const int sc::-MAXLAG =0

Maximal lag in calculations of the error of mean for correlated values
5.3 wf Namespace Reference
Additional to wf_t (p.65), this namespace wf contains two supplementary

functions - getzshift() (p.47) and the sample progress indicator progress()
(p.48). Also, all the module constants are defined here.

Enumerations

e enum LEFFTYPE { LEFFTEST = 0, LEFFFIX =1 }

Functions

e double getzshift (double foclen_feed, double foclen_conj)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3

wf Namespace Reference 46

Compute altitude shift in generalized mode from parameters of optics.

void progress (int stage)

Sample progress indicator for console.

int checalc (const char xsedfile, const char xresponse, const char
xwfile, int naper, double diam, double *eps_inn, double *eps_out, dou-
ble z0=0, double zmax=0, double dz=0, double dzmin=0, bool cal-
cit=false, void(*progress)(int)=0)

Check the weight file to correspond to given system and spectral parame-
ters. May recalculate on mismatch.

int zgrid_set (double #x*zgrid, double z0, double zmax, double dz,
double dzmin)

Generate the grid of values given its generation parameters.

void make_fft (double xlambda, double *edist, int nedist)
Compute the FT of SED in units of [1/cm].

double sfunc (double)
Compute the imaginary part of the Fourier transform of the light SED.

double sdum (double f)

Test-case of S-function: analytical for ”quasi-gaussian” SED.

double flama (double x)

Compute the under-integral expression for the weight integration.

double weight (double z, double d, double epsl, double eps2, double
eps3, double eps4)

Compute the weight of a given z in a scintillation index.

void getspechar (double xlambda, double xedist, int nedist, double
xleff, double x1blue, double xlred)

Compute some characteristic points on the spectrum.

void read2col (const char *filename, double xxcoll, double **col2, int
KNTOW)

Read the two columns of argument and function values from file.

void conwgrid (double xwgrid, int n, int scale)

Convert array of optical (!) wavelengths into given scale.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference 47

e void sedcrv (double xslambda, double *sed, int nsed, double
«xrlambda, double *response, int nresponse)

Multiply the spectrum curve by the response curve with optionally shifted
0T1gins.

Variables

e const double MAX_DIAM = 1000
e const int MAXNZ = 10000

e const double WSCALE = 1E11
e const int WVALEN = 15

e const double Z0 = 0

e const double ZMAX = 30

e const double DZ = 0.2

e const double DZMIN = 0.04

e const double EPSD = 2E-2

e const double EPSLEFF = 0.003
e const double EPSDZ = 1.5

e const int LTEXT = 80

e const int MKM_RANGE =0

5.3.1 Enumeration Type Documentation

5.3.1.1 enum wf:LEFFTYPE
Flag for wf_t::calcleff() (p.74) to fix the computed spectral characteristics

after comparison

Enumeration values:
LEFFTEST do not fix calculated Lblue, Lred, Leff in wf_t (p.65),
only compare

LEFFFIX fix wavelengths in wf_t (p.65) after comparison
5.3.2 Function Documentation

5.3.2.1 double wf::getzshift (double foclen_feed, double foclen._-
cony)

Parameters:
foclen_feed Focal length of feeding optics, [mm]

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference

48

foclen_conj Focal length of conjugating lens, [mm]

Returns:
zshift Altitude shift in generalized mode, [km]

Function computes the shift from the ratio of squared focal length of feeding
optics and focal length of conjugating lens. Normally, the positive lens
(with a positive foclen_conj) is used for conjugation to negative altitudes i.e.
working in a generalized mode. That’s why the result is negative for positive
parameters.

Note:
May depend on defocus, to be modified.

5.3.2.2 void wf::progress (int stage)

Parameters:
stage Part of the ”"work-done” (0..100) [percents]

Returns:
void

Example progress indicator, to be replaced with a suitable one

5.3.2.3 int wf::checalc (const char * sedfile, const char *x response,
const char x wfile, int naper, double diam, double * eps_inn, double
*x eps_out, double z0 = 0, double zmax = 0, double dz = 0, double
dzmin = 0, bool calcit = false, void(x progress)(int) = 0)

Parameters:
sedfile Stellar spectrum energy distribution file

response System response curve file

wfile Weight file to check and/or put the results of calculations
naper Number of entrance apertures in scintillation device
diam see wf_t::setaper() (p.68)

eps_inn see wi_t::setaper() (p.68)

eps_out see wf_t::setaper() (p.68)

z0 altitude grid starting point (see wf_t::setzgrid() (p.70))

zmazx maximal altitude in weight matrix

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.3 wf Namespace Reference

49

dz altitude step
dzmin minimal step for propostional grid (0 for equidistant)
calcit False: only check the file, True: recalculate if does not fit

progress function to call to visualize the work stage (if needed)

Returns:
the comparison result returned by wf_t::checkfile() (p.72) or error
code

This function makes use of all the functionalities presented by the class wf_t
(p. 65) to compute the weight functions set for a system of a given geometry
and a certain spectrum of incident light (composed by the star’s SED and
the system response function).

Via parameters, all the needed information on the geometry and spectrum
is provided. The altitude grid, if left default (all values are 0), is taken as
given by the parameters wf::Z0 (p. 56), wf::ZMAX (p.56), wf::DZ (p. 57),
wi::DZMIN (p.57).

If some mismatch is found between the weight in file wfile and the config-
uration specified by the parameters, the result ”false” is returned in case
calcit=false. The particular reason of a mismatch is provided by the call to
nr::erget() (p.81), nr::ermessage() (p.81). Don’t forget to reset then the
error before continuing with nr::erreset() (p.83).

If a mismatch is found and calcit is ”"true”, the weights are recomputed in
the file wfile. " True” is returned normally (the result of wf_t::cale() (p.73)
actually).

Note:
In case of recalculation, the ”optimal” grid of altitudes specified by
the parameters wf::Z0 (p.56), wf::ZMAX (p.56), wf::DZ (p.57),
wi::DZMIN (p.57) is taken for calculations unless the mismatch be-
tween the file and parameters was indeed the grids mismatch. In latter
case, the z0, zmaz, dz and dzmin parameters are taken instead.

5.3.2.4 int wf::zgrid_set (double xx zgrid, double 20, double zmaxz,
double dz, double dzmin)

Parameters:
zgrid pointer double-type array

z0 starting value

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.3 wf Namespace Reference 50

zmax value to reach
dz value modifier

dzmin minimal value step

Returns:
Number of steps in z, -6 if NOT NULL zgrid pointer, -3 if bad params

This function implements the generation of a grid of abscissa values used
by wf_t::setzgrid() (p.70) to generate the altitude grid in weight func-
tion structure. See weif.hxx for description of an algorithm given in
wi::setzgrid() documentation.

The function counts the steps that will be computed, allocates the double-
type array (to which the first parameter must point) and fills in it. The
array must be freed after usage (free_dvector()).

5.3.2.5 void wf::make fit (double x lambda, double x edist, int
nedist)

Parameters:
lambda wavelength grid

edist light SED
nedist w/l grid length

Returns:
0 if Ok, <0 on error

The Fast Fourrier Transform is used to compute the FT.

Before FF'T, the SED is normalized by division of each value by the integral
of SED. Then, the grid of SED is expanded four times with padding the
obtained "tail” with zero values; SED values are divided by their argument
wavelengths. Thus, the result of the FFT algorithm (fourl() utility from
NR is used) has a better sampling in the frequency domain which makes the
spline interpolation of the spectrum more robust.

Since the grid of SED starts at non-zero wavelength but immediately near
the wavelength of the blue-end of the sensitivity curve of MASS, the FT
is made on this origin-shifted spectrum. So, the correction for this shift is
needed afterwards (see below).

The units of the wavelengths are converted into [cm], the shift of the SED
to its origin and the sampling of the wavelength grid are also expressed
in [cm]. This ensures the correct normalization of the resulting FT and a

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference 51

proper correction of the real and imaginary parts of the FT for the made
shift of SED to its origin. The latter correction is made in sfunc() (p.51)
analytically.

5.3.2.6 double wf::sfunc (double f)

Parameters:
f frequency in [1/cm] units

Returns:
Im(FT(SED))**2

Private function used by flama() (p. 52).

The results of the spline approximation of the real and imaginary parts of
FT of Apipn-shifted SED are used. Spline coefficients are already computed in
make_fIt() (p. 50) and put into re_edist_ftspin/] and im_edist_ftspin[] arrays.
Re- and Im-parts are taken from splines, corrected for the shift of SED to its
origin (made while making FFT) by multiplication by exp(—2mi),in) and
the square of the imaginary part of the product is returned.

Spline coefficients re/im_edist_ftspin[], computed FT grid re/im_edist_ft[]
and the frequency grid edist_freq[] are the global (private) arrays with the
length edist_ftnn.

See also:
wf_t::cale() (p.73)

5.3.2.7 double wf::sdum (double f)

Parameters:
f frequency [1/cm]

Returns:

S

Private function which may replace sfunc() (p.51) in flama() (p.52) for
test-calculations.

In case of the SED being the ”quasi-gaussian” function, the S-function is a
purely analytical expression:

S = sin?(2n Ao f)exp(—4(ro f2)?) /Ao

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference

52

for the SED which is a normalized A-multiplied gaussian with a o-dispersion
centered at Ag.

The substitution of sdum() (p.51) instead of sfunc() (p.51) in flamal()
(p.52) may help to test the influence of "non-gaussianity” of the spectrum
on the resulting shape of the weight function. The effect, in general, does
not exceed a few percents (below 10 in any case) for the AOV star and the
MASS response function.

5.3.2.8 double wf::flama (double z)

Parameters:
x spatial frequency in inverse meters

Returns:
Under-integral expression (see doc)

Private function used by weight() (p.53).

In polychromatic treatment, the weight is integrated from:

E = 783 4%8(2f%/2) « A(f).

where the function S(f) is a squared integral of SED of incident light with
sine-modulation over wavelengths:

Amaz
S(f) = / Sin(2mAf) F(A\)dA
Amin

which is, in fact, the squared imaginary part of the Fourier Transform of
F(A\)/\ computed by sfunc() (p.51).

If SED is a delta-function centered at Ag, then the expression turns into the
known monochromatic one:

E = {733 wsin?(2f2Xo) * A(f).

Here A(f) is a normalized aperture OTF for the given geometry of two annu-
lar apertures. For simplicity, the geometry parameters diameter, epsilonl..4
are transferred via the global parameters; function S() is also the global
(private) function sfunc() (p.51).

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

5.3 wf Namespace Reference 53

5.3.2.9 double wf::weight (double z, double d, double eps1, dou-
ble eps2, double eps3, double eps/)

Parameters:
z altitude [km]

d reference size of an aperture [cm]

eps1 relative outer size of 1st (larger) aperture

eps2 relative inner size of 1st (larger) aperture

eps3 relative outer size of 2nd (smaller) aperture (may be 0)

eps4 relative inner size of 2nd (smaller) aperture (may be 0)

Returns:
Weight value in [m”(1/3)]

Private function used by wf_t::calc() (p.73).

Function returns the weight for an altitude z in the stellar scintillation. The
FT of the incident light SED divided by lambda is assumed to be ready
and accessible by the function sfunc() (p.51). The diameter of the largest
entrance aperture is d and the radii of annular apertures are obtained by its
multiplication by eps1..4.

The first (say, larger) aperture has the outer diameter d«eps! and the inner
dxeps2. The second (smaller) aperture has the outer diameter dxeps3 and
the inner dxepsj.

If only two of four epsilons differ from each other (non-zero ring width) then
the weighting function value for the normal scintillation index is returned
for a given aperture (for the larger one - if epsl>eps2>0, eps3=eps4; for the
smaller one - if vise versa).

If three or four epsilons are different (epsl>eps2 and eps3>eps4) then the
weighting finction value for the differential scintillation index is returned for
a pair of apertures with sizes (dxepsl,dxeps2) — (dxeps3,dxeps}).

The polychromatic expression for the weight is used here, which uses the F'T
of the light SED to compute the so called S-function sfunc() (p.51). This
function stays for the part of the under-integral expression of the weight
which is computed by flama() (p.52). And the latter is already the func-
tion which is integrated by the qromo() (p.80) integrator with the relative
convergence criterion. It integrates the weight for the range of spatial fre-
quencies from X1=1e-4 to X2=18.

The weight for the zero altitude is artificially set to zero.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference 54

5.3.2.10 void wf::getspechar (double * lambda, double * edist, int
nedist, double x leff, double * lblue, double x Ilred)

Parameters:
lambda wavelength grid

edist respective spectral energy distribution
nedist length of lambda and edist grids
leff Returned effective wavelength in [units of lambda]

Iblue Returned wavelength of the 50% level of SED at blue side from
the SED’s peak in [units of lambda/

lred ditto at the red side from the SED’s peak

Function searchs for the maximum of edist/] computing simultaneously the
gravity center of edist to be returned as leff. Then, it goes to the left and
to the right from the maximum until the level of 50% level of the maximal
one is crossed by the curve. The lblue and Ilred points are computed by the
local linear interpolation between the adjacent points.

See also:
wi_leff()

5.3.2.11 void wf::read2col (const char x filename, double ** coll,
double ** col2, int * nrow)

Parameters:
filename file name

coll pointer to the array of arguments (first column data)
col2 pointer to the array of function values (second column)

nrow pointer to the place where to put the length of allocated arrays
of arguments and function values

This utility reads the pairs of numeric values from the text-type file ignoring
the lines beginning with comment symbol ”#”. Two non-allocated pointers
must be supplied as NULLs on start. Function counts the non-comment
data lines, allocates the memory for arrays of argument (first column) and
function values (second column) with lengths equal to the number of the
counted data lines, and then reads the columns into them.

The following checks are done on each non-comment line:

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference 55

e at least two numeric tokens are given in each line (argument and func-
tion)

e argument is a monotonously rising function

e argument values start from some positive number

e function is non-negative

e function has a positive average The function is thus suited for reading
the spectrum-like information.

Errors possible are the problem of file opening/reading or line parsing. In
case of error, the pointers are returned unallocated.

5.3.2.12 void wf::conwgrid (double x wgrid, int n, int scale)

Parameters:
wgrid array of optical wavelengths in [angstrem] or [nm]

n its length

scale decimal logarithm of the wavelength of the infrared end of the
optical range to obtain

This is an utility for conversion of the spectral curves (response function
or spectrum) into the wavelength grid in a given units scale. It takes the
value from the middle of the array and assumes that it must be in between
0.1 and 1 mkm if it’s an optical range. Then it makes the conversion by
multiplication of the array value by an integer power of 10 which makes the
middle array value lying in the range (0.1-1.0)*10%x{scale}.

Example

Let the middle point of wgrid (it is wgrid/n/2]) be equal to 410 on start
(i.e. the grid is in [nm]). Scale is given as "0”, i.e. we want the spectrum
to belong to the range 0.1-1.0, i.e. to be expressed in [mkm]| on exit. The
initial range is range=(int)lg(410)+1=3. So, the conversion coefficient will
be 10x*conv, where conv=scale-range=-3.

5.3.2.13 void wf::sedcrv (double x slambda, double * sed, int nsed,
double * rlambda, double * response, int nresponse)

Parameters:
slambda array of wavelengths of spectrum

sed array of spectrum; returned multiplied by response in first nre-
sponse elements

nsed length of sed/] and slambda/]

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

5.3 wf Namespace Reference 56

rlambda array of wavelengths of response
response array of response curve

nresponse length of response[] and rlambdaf]

Function looks for the coincidence of some k-th element of slambda/] grid
with the first element of the response curve wavelength grid rlambda. This
k is a shift (or difference) of origins of SED and response curves (normally,
the spectrum is wider).

Then, first elements of spectrum - sed/i/, i=0..nresponse - are rewritten with
the product of SED and response curves sed[i+k[xresponse[i] which takes
into account the different origins of these functions. Last nsed-nresponse
elements of sed[] are replaced with zeros. Thus, on exit only first nresponse
elements of sed/] make sense.

See also:
calcwf() checksed()

5.3.3 Variable Documentation

5.3.3.1 const double wf::MAX_DIAM = 1000

Maximal size of aperture [cm] (arbitrary but plausible)

5.3.3.2 const int wfi:MAXNZ = 10000

Maximal number of altitude steps

5.3.3.3 const double wf:: WSCALE = 1E11
Writing weights to the file : the Scale factor to divide the values by

5.3.3.4 const int wfi:WVALEN = 15

Longest plausible weight value record in a file (normal format: %10.4E)

5.3.3.5 const double wf::Z0 = 0

Usual value for low boundary of altitude range

5.3.3.6 const double wf::ZMAX = 30

Maximal feasible value for upper boundary of altitude range

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6 Part II. Class Documentation

57

5.3.3.7 const double wf::DZ = 0.2

Optimal altitude modifier for z-grid creation in proportional mode

5.3.3.8 const double wf::DZMIN = 0.04

Optimal minimal altitude step for z-grid creation in proportional mode

5.3.3.9 const double wf::EPSD = 2E-2

Relative tolerance in aperture sizes to accept the weight file

5.3.3.10 const double wf::EPSLEFF = 0.003

Tolerance level in effective wavelength and SED’s 50% points [mkm]. This
value corresponds to change of these wavelengths which causes the change
of weights not more than 1-2%.

5.3.3.11 const double wf::EPSDZ = 1.5

Relative tolerance in the altitude grid spacing: maximal acceptable ratio of
dz and dzmin in file and in the comparison structure, >1

5.3.3.12 const int wf::LTEXT = 80
Length of lines in a header part of the weight file

5.3.3.13 const int wf: MKM_RANGE = 0
Units of optical range wavelength: 0 for [mkm]|, 3 for [nm], 4 for [\AA]

6 Part II. Class Documentation

6.1 scan_t Class Reference

#include <scan.hxx>

Public Types

e cnum direct

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.1 scan_t Class Reference 58

Public Methods

e void set (int ncnt=0, double nonlin=-1)

Initialize the scan arrays before accumulation.

e scan_t (int ncnt=0, double nonlin=-1)

Constructor: set the private fields zero and call set() (p. 60).

e ~scan_t ()

Destructor: deallocate the memory reserved for storages.

e void accum (const count_t *scan, direct which)

Add the current scan to the respective scan storage.

e void merge ()

Merge back- and forward scans.

e double x get (direct which=MERG) const

Return the pointer to the needed scan.

e void center (double *x1, double *x2, direct which=MERG, bool fix-
center=false)

Locate the coordinates where the star crosses the edges of a centering
triangle aperture.

e double xshift () const

Return the shift of the star relative to the center of the field of view in
scanning direction.

e double yshift () const

Return the shift of the star relative to the center of the field of view in
radial direction.

e double defocus (int xcenter, direct which=MERG, double *sharp=0)
const

Compute the sharpness of the scan and convert it into defocus.

Static Public Methods

e void loadconst (double scale=0, double a=0, double b=-99, double
x1c=0, double x2c¢=0, int defrange=0, double sharp0=0, double foc-
scale=0)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.1 scan_t Class Reference

59

Assign the static calibration parameters for calculation of the star shifts
and image defocussing.

e void loadcenter (double x1c, double x2c)

Accept the (modified) edge-crossing coordinates for on-azis star.

e void loadfocus (int defrange, double sharp0=0, double focscale=0)

Assign the new parameters for the defocussing determination.

6.1.1 Detailed Description

Usage:

For each device channel where the scanning has to be done the object of
the class scan_t has to be declared. The constructor by default which is
involved in declaration of the array of scan_t allocates no space. So, before
accumulation of scans, the function set() (p.60) is called for scan of each
channel.

Each time the new scan is received, the scan accumulation accum() (p.61)
is called with the proper value of the flag scan_t::direct (p.59) of scanning
direction. After finishing the scanning, the utility merge() (p.61) should
be called to obtain the resulting merged scan where forward and backward
scans are coadded. The utility get() (p.61) returns the pointer to one of the
scans (forward, backward or merged). The ”scientific” functions center|()
(p.61) and defocus() (p.65) extract from the selected accumulated scan
(again 3 kinds) the information on the position of the star in the centering
triangle aperture and on the focus displacement, respectively. The results
of center() (p.61) are also stored internally and used to compute the cal-
ibrated shifts of the star xshift() (p.64) and yshift() (p.64). For latter
two functions and for defocus() (p.65), the calibration constants should be
loaded with loadconst() (p.62).

Before the new accumulation of scan, the function set() (p.60) has to be
called. If nothing has changed (dimention of scan or non-linearity), the
cleaning of the storages is only done.

The scans are made of individual counts from the MASS device channels
and represent the count_t-type arrays. The latter type definition is borrowed
from the module SCIND.

6.1.2 Member Enumeration Documentation

6.1.2.1 enum scan_t::direct

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.1 scan_t Class Reference 60

which -flag to access forward scan

6.1.3 Constructor & Destructor Documentation

6.1.3.1 scan_t::scan_t (int nent = 0, double nonlin = -1)

The default constructor is realized with default parameters passed to set()
(p.60). Thus, for array of scan_t, it is obligatory to use set() (p.60) af-
ter declaration; for a single scan_t instance, the constructor with proper
length and non-linearity can be called immediately before accum() (p. 61).
If default (invalid) non-linearity is supplied, it is set zero in constructor.

6.1.3.2 scan_t::~scan_t () [inline]

This function releases the memory which is allocated for forward, back and
merged scans by set() (p.60) with zero parameter.

6.1.4 Member Function Documentation

6.1.4.1 void scan_t::set (int ncnt = 0, double nonlin = -1)

Parameters:
nent Number of counts in a scan (forward or backward)

nonlin non-linearity parameter for the detector (i.e. the deadtime of
detector divided by the microexposure time, e.g.: nonlin = 24ns /
4ms = 6.0e-6)

The object contains the arrays fscan, bscan where the forward and backward
scans are accumulated, and mscan to coadd them afterwards in a merged
scan. These vectors have the logical length ncnt. If their physical length is
smaller, they are reallocated with a new length ncnt.

If nent is zero, the storages are deallocated and no allocation is done (the
call from destructor is done like this).

This function should be called, obviously, before the first scanning pass is
finished. Default non-linearity is made invalid to leave it unchanged.

See also:
accum() (p.61)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.1 scan_t Class Reference 61

6.1.4.2 void scan_t::accum (const count_t * scan, direct which)

Parameters:
scan pointer to the count_t -type scan array

which Direction flag: FORW: forward, BACK: backward

Function adds the given array to the forward and backward scans, latter
with inversed sequence of counts. Thus, forward and backward scans must
be identical (see get() (p.61)) if the measurement consitions are stable and
no noise is taken into account. The correction for non-linearity is done with
the non-linearity constant loaded in set() (p. 60).

6.1.4.3 void scan_t::merge ()

Function coadds the forward and backward scans into the merged scan.

See also:
accum() (p.61)

6.1.4.4 doublex scan_t::get (direct which = MERG) const

Parameters:
which BACK for backward scan , FORW for forward scan, MERG for
merged scan

Returns:
pointer to the scan array (not to be deleted!)

6.1.4.5 void scan_t::center (double x 1, double * 2, direct which
= MERG, bool fizcenter = false)

Parameters:
x1 Resulting coordinate of the crossing point of the left triangle edge
[microstep, i.e. pixel of scan]

z2 Resulting coordinate of the crossing point of the right triangle edge
[microstep]

which BACK for backward scan , FORW for forward scan, MERG for
merged scan

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.1 scan_t Class Reference

62

fixzcenter Device adjustment mode: if true, then the resulting z1 and
22 are treated as for the non-shifted star and saved in scan_t::x1c
and scan_t::x2c. See loadcenter() (p.63).

Function searches for the positions on the scan where the scan counts cross
the 50%-level of the light variation range: the points where the star appears
from and disappears behind the edges of the triangle aperture. ” Appear-
ance” stays for the result z7 and has a smaller index in (forward and merged)
scan than z2 (see xshift() (p.64) for the star shift calibration issue based
on z1 and z2).

The method is based on a linear interpolation of points on the middles of
slopes of the curve. The points are taken which surround the middle of
slopes. "Middle” is considered as a mean of background level (some k-th
smallest count in a scan) and the plateau level (median of counts which
have intensity more than 75% of the highest one.

Under average conditions (seeing and wandering of images = 1”7, scintilla-
tions of 10%, see testing main() of the module) the precision of centering is
about 0.1 microsteps.

Note:
If one of the crossing points is not covered by the aperture edge while
scanning, the respective coordinate is returned as zero.

Attention:
If the error is set in the system on enter (see nrerror() (p.83)), the
zero results are returned in 21 and z2.

6.1.4.6 void scan_t::loadconst (double scale = 0, double a = 0,
double b = -99, double z1c = 0, double x2¢ = 0, int defrange =
0, double sharp0 = 0, double focscale = 0) [static]

Parameters:
scale Focal scale near the center [arcsec/microstep]

a Sum of tangent of angles between the edges of the triangle diaphragm
and the direction to the axis of the aperture wheel

b semidifference of tangent of angles between the edges of the triangle
diaphragm and the direction to the axis of the aperture wheel

xlc scan coordinate of appearance of the non-shifted star

x2c¢ scan coordinate of disappearance of the non-shifted star

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.1 scan_t Class Reference 63

defrange Radius of sharpness calculation around the scan center [mi-
crosteps]

sharp0 Sharpness of the scan which corresponds to the perfectly fo-
cussed system

focscale focus position change per unity of the relative sharpness
change (i.e. (sh-sh0)/sh0) taken near the focus position

The function assignes the parameters to the class variables to be used in
subsequent calculations of the star displacement with xshift() (p.64) and
yshift() (p.64). Only the non-defaulted parameters are assigned. Defaults
are selected to have no sense.

Note:
These calibration parameters serve for all instances of the type scan_t
because they are static. E.g. for many channels of the device, the single
call to scan_t::loadconst() (p.62) has to be done. For the focussing
issue, the parameters (last three) have a sense for only one (say, D)
aperture.

On startup, the following calibration parameters are set:

e scale =1

e A=2

e B=20

e xlc =x2c =0

e defrange = 17
e sharp0 = 1.029
e focscale = 100.

6.1.4.7 void scan_t::loadcenter (double zI¢, double 22c)
[inline, static]

This is a shortened version of loadconst() (p.62).

6.1.4.8 void scan_t::loadfocus (int defrange, double sharp0 = 0,
double focscale = 0) [inline, static]

This is a shortened version of loadconst() (p.62).

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.1 scan_t Class Reference

64

6.1.4.9 double scan_t::xshift () const [inline]

The function uses the z1 and z2 values computed and stored in private
members by center() (p.61) to derive the shift of the star from the center
of the field of view.

/' Astanal +tana2
B=(tan al-tano2)/2

Figure 2: Scheme of MASS scanning for centering the star

As one can see from the picture, the difference of z1 and 2 is easily converted
into the Y-shift, and the Sum of them - into the X-shift via the calibration
parameters A and B (see loadconst() (p.62)):

Azl + Az2

AX:scale-f—AY-B

Here Dxz1 and Dz2 are the differences of the current edge-crossing coordinates
z1, 2 with those obtained for on-axis star.

6.1.4.10 double scan_t::yshift () const [inline]
The radial shift is computed as:

Azl — Az2

AY = scale -
scale 1

See also:
xshift() (p.64)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.2 wf.t Class Reference 65

6.1.4.11 double scan_t::defocus (int zcenter, direct which =
MERG, double * sharp = 0) const

Parameters:
xcenter scan center to compute the sharpness around

which BACK for backward scan , FORW for forward scan, MERG for

merged scan

sharp resulting sharpness placeholder; not returned by default

Returns:
defocus measure in units of focscale in loadconst() (p.62) (normally,
[mm])

Function computes the sharpness of a scan which depends significantly on
the defocussing of the system.

In current implementation, the sharpness S is the ratio of the mean square
of the signal to the squared mean of the signal:

Xc+R 9
2R+1 > scanli] Xc+R
i=Xc—R _ 1 .
S = , where Scan = E scanli]
scan? 2R+1

1=Xc—R

TLe., the signal is taken from scan at the positions closer than R=defrange
to the position Xc=zcenter.

Then, the relative sharpness deviation is computed and converted into the

defocus measure:
S — Sy

0

Defocus = focscale -

where So is the focal sharpness sharp0 (see loadfocus() (p.63)).

The documentation for this class was generated from the following file:

e scan.hxx

6.2 wf_t Class Reference

#include <weif.hxx>

Public Methods

o wi_t ()

Initialize the object fields with zero/null values.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2

wf_t Class Reference 66

void clear ()

Release the z-grid and weight matriz and assigns them zero.

~wi_t ()

Release all dynamic memory storages for deletion of object.

void setaper (int nap, double diam=0, double xeps_in=0, double
xeps_ou=0)

Assign the reference size and relative diameters for apertures.

int getnaper () const

Return the number of apertures set in structure.

int getnw () const

Return the number of apertures and their combinations.

const char * name (int index) const

Give a name for respective weight.

void setzgrid (double z0, double zmax, double dz, double dzmin)

Generate the altitude grid given its parameters.

int getnz () const

Return the number of altitude steps in z-grid.

void write (const char xfilename) const
Writes weight matriz with parameters in disk ASCII file.

int checkfile (const char xfilename) const

Checks the weight file header values to conform the wf_t parameters

(fields).

int read (const char *filename)

Read the object — weight matriz and its parameters — from the disk file.

void calec (double xlambda, double =xedist, int nedist,
void(xprogress)(int))

Calculate the weight matriz for a given energy distribution.

int calcleff (double *lambda, double xedist, int nedist, int fix)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2

wf_t Class Reference 67

Calculate the effective wavelength and 50%-levels of the light energy dis-
tribution and compares them with that set in member fields.

void interpolate (wf_t srefwf, double shift, double *maxerr=0, int
*iz_maxerr=0, int xiw_maxerr=0)

Interpolate the weights from the reference object to the z-grid set in the
object with a given optional z-shift.

double getleff () const

double getblue () const

double getred () const

double getval (int iz, int iw) const

Get the weight value for given weight and altitude indices.

void copy (int lowiz, int hiiz, int iw, double *dest) const

Copy (part of) a certain weight function to double-type array.

double getalt (int iz) const

Get the altitude grid value for a given altitude indez.

6.2.1 Detailed Description

This class contains all the data which describe the scintillation weighting
functions of altitudes for all entrance apertures with which it is measured.
The information on the apertures themselves and on the spectral character-
istics of the incident light is also present in members of this class.

The allocation of the memory for double-type arrays is made in several

member functions:

setaper() (p.68) - for allocation of geometry array parameters eps_-
inn[], eps_out[] ;

setzgrid() (p.70) - allocates the altitude grid zgrid[};

calc() (p. 73) and read() (p. 73) - allocate the matrix of weights before
its calculation or reading, respectively.

Deallocation of all the memory allocated for arrays is done by setaper|()
(p. 68) with one zero parameter (it is called also from the destructor).

The constructor initializes the arrays and members with zeros; in all func-
tions null pointer is a necessary demand for array to allow its allocation and,
wise versa, if an array is not null, it is believed to be already allocated.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2 wf.t Class Reference 68

6.2.2 Constructor & Destructor Documentation

6.2.2.1 wf t::~wft () [inline]

The feature of setaper() (p.68) to release all the memory on call with a
zero argument is used.

6.2.3 Member Function Documentation

6.2.3.1 void wf_t::clear ()

The signature of allocation of memory to zgrid and ws members of wf_-
t is non-zero z-dimention nz and non-zero respective pointers. Memory is
released if only both nz and pointers are not zero.

6.2.3.2 void wf_t::setaper (int nap, double diam = 0, double x
eps_in = 0, double x eps_ou = 0)

Parameters:
nap number of annular apertures

diam reference size or magnification factor
eps_in array of inner diameters of apertures [cm]

eps_ou array of outer diameters of apertures [cm]

Procedure assigns the field naper to the number of apertures and allocates
and fills in the arrays of their relative sizes. Input arrays eps_inn and eps_out
are interpreted as:

e physical instrumental sizes of apertures — then diam plays the role of
the magnification of the system;

e or relative sizes (eps_... < 1) with respect to the outer diameter of the
largest aperture — then diam is a size of a largest entrance aperture.

In any case, only the values diamxeps_... have a physical sense.

Usage:

e if nap<0, then the member arrays eps_inn and eps_out are simply
ASSIGNED to parameters eps_in and eps_ou, respectively. In this case
they are not released afterwards (see naper==0 case) — the member
flag staticapert is set ”true” for this.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2 wf.t Class Reference

69

e if nap>0, then input arrays are COPIED into newly allocated member
arrays eps_inn, eps_out. staticapert is set "false” to allow releasing of
them in destructor.

e If nap==0, then this function RELEASES all the memory allocated
previously in dynamic memory for member arrays.

See also:
setzgrid() (p.70)

6.2.3.3 int wf_t::getnaper () const [inline]

Returns:
Number of apertures set in wif_t

6.2.3.4 int wf_t::getnw () const [inline]

Returns:
Number of weights which corresponds to the apertures number set

The function which returns the number of apertures and their combinations
with no difference in order is defined in scind.hxx: sc::napcomb() (p. 25).

6.2.3.5 const charx wf_t::name (int index) const [inline]

Parameters:
index sequential number of weight in weight matrix

Returns:
pointer to the static const charx name, which is empty if index is invalid

Name of the weight is a name of aperture or their combinations which
corresponds to the given index. Thus, this function is just a synonym
of sc::apername() (p.25). In case of a problem, the error message
nr::ermessage() (p.81) originates from the WEIF module.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.2 wf.t Class Reference 70

6.2.3.6 void wf_t::setzgrid (double z0, double zmaz, double dz,
double dzmin)

Parameters:
z0 starting altitude [km]

zmaz altitude to reach [km]

dz altitude modifier ([km] for equidistant grid, unitless for propor-
tional)

dzmin minimal altitude step [km]

Compute the grid of altitude steps for calculation of weighting functions like
follows:

The grid may be either equidistant (if dzmin ==0) or proportional (dzmin
!=0). The current restriction is that the altitude modifier should be positive.

Equidistant grid is given as:
z[i] = 20 + i xdz
where i is in [0,nz-1], nz conforms to the following condition:
2[0] + dz(nz — 2) < zmazx

and
2[0] + dz(nz — 1) > zmaz

Proportional grid is constructed as follows:

z[0] = z0

z[i] z[i-1] + step

step0 = z[i-1] * dz

step = (dzmin > step0) ? (step = dzmin) : (step = step0)

where i is in [0,nz-1], nz conforms to the following condition:
z[nz — 2] < zmax

and
z[nz — 1] > zmaz.

In both types of grid, z[nz-1] is replaced with zmaz.

This function is an interface to the lower-level private function zgrid_set()
which works directly with the array wf_t::zgrid.

See also:
setaper() (p. 68)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2 wf.t Class Reference 71

6.2.3.7 int wf t::getnz () const [inline]

Returns:
Number of z-steps set in object

6.2.3.8 void wf_t::write (const char x filename) const

Parameters:
filename file name to write weight

Procedure writes the matrix of weights which rows are preceded with the z-
grid altitudes in the first column. The header is also created which contains
all the parameters - the fields of wf_t.

The format of the header line is following:

<KEY> <VALUE1> [<VALUE2> [VALUE3 VALUE4]]

where <KEY> is a single-letter designation of parameter and <VALUE> -
its value(s). Keys are listed below with names of respective wi_t fields and
description in brackets:

e N —naper (number of apertures)
e A — Dxeps_inn[0] Dxeps_inn[0] (diameters of the 1st aperture)
e B — Dxeps_inn[1] Dxeps_inn[1] (diameters of the 2nd aperture)

e S — leff Iblue Ired (effective wavelength and 50%-level points in [mkm])
e Z — 20 zmax dz dzmin (parameters for an altitude grid generation)

e W —weightscale (the scale-factor for the weight values written in this
file)

After the header, the line goes which precedes the z-grid and wf (p.45)-
matrix values:

##Altit. W(A)/1E+11 W(B)/1E+11 ... W(AB)/1E+11

where 1E+11 is a number to which the values of weights are scaled in a file
(weightscale).

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2 wf.t Class Reference 72

Any similar line which starts with "##” is interpreted by wf_t::read()
(p.73) as a comment.

After the heading line ”#Altit...” the z-grid and weight-matrix values go be-
ing separated with spaces for each altitude; thus — one line per each altitude.

6.2.3.9 int wf_t::checkfile (const char * filename) const

Parameters:
filename name of the file to read

Returns:
0 if parameters coincide, <0 if error or parameters do not coin-
cide (the reason of incoincidence is reflected by following error codes:
nr::ERSPE (p.84), nr::ERGEO (p.84) and nr::ERZGR (p. 84)).

Procedure reads the header info in weight file (see description of the header
in write() (p.71) documentation) and checks whether the parameters given
in the file header coincide (within some allowed errors) with respective fields
of the supplied wf_t object. The latter can be, for example, initialized from
some task-file (configuration file or something else). The aim is to get a clue
to decide whether the weights for given parameters can be read from a given
file or should be recomputed.

The comparison is made until the first significant difference is found, in the
following order: Z-grid, Apertures and Spectrum.

The major source of the difference in weights is the spectrum of light and
apertures geometry. Spectral characteristics in file (3 wavelengths, see wf_-
t::calcleff() (p.74)) must coincide to within EPSLEFF with given in wf;
aperture diameters in wf_t and in file must differ not more than EPSD in a
relative measure.

Another determinator is an altitude grid. The range boundaries in file (20
and zmaz) must cover from both sides the range in wf_t to be allowed. Since
the weights are normally well interpolated, the minimal spacing in altitude
dzmin and altitude modifier dz in file do not have to coincide to that given
in wf. Instead, they only have to be not more than EPSZ times larger than
in wf_t. If the grid in the file is thinner, it is accepted.

If no error is found in header, the function read() (p.73) is called on the
checked file with a trial weight structure. After call this structure is cleared
and resulting error (if any) is returned.

See also:
write() (p.71) read() (p.73)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2 wf.t Class Reference 73

6.2.3.10 int wf_t::read (const char x filename)

Parameters:
filename name of file to read

Returns:
0 if Ok, <0 if reading error

Procedure reads the matrix of weights and its parameters from the disk file
into the fields of object. Thus, parameters are modified compared to that
assigned to the structure fields before. Before reading, the procedure will
try to clear all the dynamic data if the pointers of respective member arrays
are not nulls.

This function is meant to be used with files which were tested by checkfile()
(p.72) to contain exactly the needed data. It does not check the validity of
numbers in file. The weight matrix and z-grid data are converted from char-
acter representation to floating point numbers with standard function ”str-
tod” and thus checked to be indeed numbers. Otherwise, the nr:: ERFIO
(p. 84) is returned and the altitude where the error in weight value occured.

Note:
The zgrid[] is read directly from the leftmost column of data section of
the weight file and is NOT CHECKED to correspond to the given z-
grid parameters z0,zmaz,dz,dzmin parameters which are read from the
header.

See also:
checkfile() (p.72)

6.2.3.11 void wf_t::calc (double x lambda, double x edist, int
nedist, void(x progress)(int))

Parameters:
lambda grid of wavelengths [mkm]

edist incident energy distribution (given on lambda grid)
nedist length of the lambda and edist grids

progress function to call to visualize the work stage (if needed)

Given the parameters in numeric members of the object (aperture geom-
etry) and input spectrum, the weights are computed on a filled zgrid (see
setzgrid() (p.70)).

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

6.2 wf.t Class Reference

74

The weights are computed for the polychromatic case of incident light SED
which involves the Fourier Transform of the SED divided by the wavelength.
This FT is made by wf::make_fIt() (p.50) once before calculation of all
weights and is represented in two global arrays as cubic spline coefficients.
In order to have smoother shape, the SED is shifted to its origin (starting
wavelength A,) to dump the high-frequency oscillations in FT. The back-
correction for this shift is made analytically after the spline interpolation
for the given frequency.

Before calculations, the weight matrix is allocated IF it was NULL. If it was
not NULL, it is assumed that it was already allocated (e.g. in a previous
call of this routine, say, with different en.dist.).

Then, for all apertures, their combinations and for all altitudes in the z-grid,
the function wf::weight() (p.53) is called to make the weight integration
itself.

At the end, the SED characteristics computer wf_t::calcleff() (p.74) is
called to fill in the respective spectral fields. It appears that effective wave-
length represents best the shape of weights if they are computed for the
" quasi-gaussian” approximation of SED with its actual FWHM. Meanwhile,
the deviations may be as high as 10% from the exact shape, especially for
differential indices of small apertures.

The utility calls the external function progress() (if supplied as non-null)
to visualize the degree of the made work. This degree, in percents, is an
integer-type argument changing from 0 in the beginning to 100 at the end.
Progress function is called twice per altitude step.

Performance

At the IBM P-III 667 MHz machine, the calculations of weights with 26
proportional steps of altitude (up to 20 km) and for 4 apertures take 14
seconds.

6.2.3.12 int wf_t::calcleff (double x lambda, double * edist, int
nedist, int fiz)

Parameters:
lambda grid of wavelengths [mkm]

edist incident energy distribution (SED), given on lambda grid

nedist number of nodes in lambda grid (points of en.dist.), or 0 to reset
the spectral information in weight structure

fix If fixr==1: assign the computed spectral characteristics to wf_-
t fields, or leave them otherwise (use wf::LEFFFIX (p.47) or
wi:LEFFTEST (p.47))

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.2 wf.t Class Reference

75

Returns:
int(SED characteristics differ from that set in the structure) or the
(negative) error code

The effective wavelength and the wavelengths at which the relative light
energy is equal to 50% of the maximal are computed by the local linear
interpolation for the given incident light SED. It is assumed that an array of
relative intensities edist[] takes into account the instrument and atmospheric
transmission functions. The computed effective wavelength and 50% points
are first compared to the values in the fields leff, Iblue and Ired, and then
assigned to them, if fit==1 and (!) the difference is significant.

The result of comparison is returned: 0 if the difference is not significant,
i.e. all three calculated numbers are within +/- EPSLEFF interval from the
field values, and 1 if at least one of them differs by more than FPSLEFF.
All wavelengths are in [mkm].

If the parameter \nedist is supplied as 0, the calculations and comparison
are skipped and the fields leff, lblue and Ired are reset to zero. 0 is returned.

6.2.3.13 void wf_t::interpolate (wf_t x refwf, double shift, double
* mazerr = 0, int * iz_maxerr = 0, int * tw_mazerr = 0)

Parameters:
refwf wf_t to get the weights from

shift the shift of weight function along z-grid [km]

mazxerr pointer where to put the maximal weight error due to interp
(works in POLINT option of compilation; may be null).

iz_maxerr pointer to put the z-grid index of this error (may be null)

tw_mazxerr pointer to put the weight index of this error (may be null)

This function uses the NR recipe for interpolation of weight values from one
z-grid into another. Input weight structure wf_t must be fully determined;
output structure must only contain the computed new z-grid: i.e. only the
setzgrid() (p.70) function must be called for it before interpolation. Other
parameters must be empty - they will be assigned from the reference wf_t
fields.

The parameter shift allows one to obtain the shifted weighting functions
suited to work with the indices measured with the shifted pupil of the system
(defocusing of the instrument). The negative altitudes when probed during
the interpolation of the positively shifted functions are replaced with their

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

6.2 wf.t Class Reference 76

absolute values. When negatively shifted function is stretched to reach the
same zmaz, the extrapolation case takes place.

The rest parameters are three pointers to variables in which the user may
receive the estimated maximal interpolation error of the weight, and the
indices in z-grid and weight number where this maximal error was found.
For example, for 4-aperture weight matrix (10 weights for each altitude),
iz_maxerr = 2 and iw_maxerr = 5 will mean that maximal error mazerr was
found at the third stage of the NEW altitude grid zgrid[2] and for the weight
of AC-aperture combination.

6.2.3.14 double wf_t::getleff () const [inline]

Return the member leff value

6.2.3.15 double wf_t::getblue () const [inline]

Return the member lblue value

6.2.3.16 double wf_t::getred () const [inline]

Return the member [lred value

6.2.3.17 double wf_t::getval (int iz, int ‘w) const

Parameters:
iz altitude grid index, must be in range [0..getnz(wf)-1]

tw weight index, must be in range [0..getnw(wf)-1]

Returns:
Weight value (non-negative)

See also:
copy() (p.76)

6.2.3.18 void wf_t::copy (int lowiz, int hiiz, int {w, double * dest)
const

Parameters:

lowiz low limit of the altitude index (see getnz() (p.71))
7

1)

)
hiiz upper limit of the altitude index (see getnz() (p.

tw weight index, must be in range [0..getnw(wf)-1]

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7 Part II. File Documentation T

dest double-type array

This function copies one of available rows of the weight matrix into the
pre-allocated destination array.

Attention:

In case of unallocated dest vector, the segmentation fault failure occurs!
It is only checked to be non-null.

6.2.3.19 double wf_t::getalt (int ¢z) const

Parameters:
iz altitude grid index, must be in range [0..getnz(wf)-1]

Returns:
Altitude value (non-negative, in [km])

The documentation for this class was generated from the following files:

o weif.hxx
e weif.cpp

7 Part II. File Documentation

7.1 atmos.hxx File Reference

#include <stdio.h>
#include "nrutil.h"

#include "weif.hxx"

Namespaces

e namespace atm

7.1.1 Detailed Description

MASS project: TURBINA module file header file for atmos.cpp

The module ATMOS specifies the top-level calculations which are aimed to
compute the atmospheric parameters and the turbulence profile. The weight

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.1 atmos.hxx File Reference

78

functions related to calculations are described themselves in the module
WEIF. With the help of these functions, the various integrals over the alti-
tude which approximate the certain moments of the turbulence (calibrated
into seeing, isoplanatic angles etc) are calculated and the low-resolution tur-
bulence profile is computed.

The task of this module is split in following parts:

e using the given altitude weight functions, produce the matrix of co-
efficients to convert the vector of scintillation indices into a vector of
the turbulence moments

e convert the vector of (base-time, instantaneous) scintillation indices
into the vector of turbulence moments using the matrix multiplication

e average the set of the turbulence moments vectors and convert the
average vector into a set of atmospheric integral parameters (seeing,
isoplanatic angle etc.)

e fit the model with a few turbulent layers to reproduce an observed set
of average scintillation indices (two methods are currently available)

Usage:

The module in current version does not need initialization, only shutdown
(atm::done() (p. 10), see below). Note, that the initialization of the module
SCIND has to be done separately while using this module in a usual pipeline
of procedures within one program. Initialization and update of information
on the system geometry is done only via the change of weight files provided
to atm::update() (p.7).

Each time the new object is selected or the altitude shift values for the
generalized mode measurements are changed, the the indices-to-turbulence
moments conversion matrices must be updated with atm::update() (p.7)
using the new weight file names and/or altitude shifts. Use wf::checalc()
(p. 48) function of WEIF module to check the correspondence of the (file of)
weight functions set to the object’s spectral energy distribution (SED).

Each time some (instantaneous) scintillation indices are obtained, the com-
putation of integrals of Cn2+h”a over atmosphere (power a=0,1,5/3,2) has
to be done with atm::calcint() (p.12). The results are stored internally.

After the completion of the accumulation time, the integrals of Cn2 by pow-
ers of altitude are averaged and converted into seeing, isoplanatic angle and
effective altitude of turbulence by atm::avgint() (p.15). Also, the proce-
dure atm::calen2() (p.13) may be called which uses the average indices
and their errors to restore the low-resolution Cn2-profile with one of two
methods. Results are accessible with atm::getxcn2x() functions.

Once the profile and/or atmospheric characteristics are computed, they

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

7.2 nr.h File Reference

79

may be saved on disk by atm::write() (p. 17) with different switching keys
atm::what (p.7). The converted average integral values and their relative
errors may be accessed by atm::getval() (p.10) and atm::geterr() (p.11)
after atm::avgint() (p. 15) call.

Finally, to end with the measurements, call a memory destructor
atm::done() (p.10).

This module provides an option for a stand-alone program which accepts
the weight functions file and the mass-file data (file or from standard in-
put). On input of instantaneous scintillation indices, the turbulence mo-
ments are accumulated; on averaged indices, the profile restoration using
all available methods happens and integrals are averaged and converted
into atmospheric parameters. The needed system parameters are read from
preamble-type records but may also be specified with input parameters as
starting values or if no preamble-records are present. Zenith distance is
not computed but taken from ’O’- and "M’-records from the last parameter
numbers (if present). See main() which should be compiled with the macro
ATMOSTEST set.

Version:
1.5: Translation into C++

2.0: New decomposition, independent executable option (not just a test)

7.2 nr.h File Reference

A set of NR recipes under use in TURBINA data processing.

Defines

e #define float double

Functions

e float qromo (float(*func)(float), float a, float b,
float (xchoose)(float(x)(float), float, float, int),double EPS)

Modified integrator for weight calculations.

7.2.1 Detailed Description

MASS project: TURBINA module file header file for nr.c

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

7.2 nr.h File Reference 80

The module NR contains the set of procedures from ”"Numerical Recipes
in C: The art of scientific programming”. All the files of the used recipes
are concatenated in nr.c by means of include directives. At the top of this
concatenation, in this header file, we set a heading

#define float double

to make all the mathematics done in double-precision, as accepted in MASS
Software (see nrutil.h documentation).

The memory- and error-handling utilities are given in a separate module
NRUTIL.

Usage:

The memory allocation within the MASS ”scientific” modules (scind, weif,
scan and atmos) is done with dvector(), dmatrix() for floating point
arrays; deallocation is made with respective free_dvector() and free_-
dmatrix(). Thus, we use explicitly the double-type arrays.

The only modified scientific recipe is the qromo() (p. 80) integrator which is
given in qromo2.c source file to implement the relative convergence criterion.
The use of all the other recipes is normal, as described in the Book. They
are only modified to conform C++ conventions and return after nrerror()
(p.83) call.

Version:
1.5: Adaptation of recipes to be compatible with C++

7.2.2 Define Documentation

7.2.2.1 #define float double

All the mathematics with ”float”-type is done actually in double-type in
nr.c, nrutil.cpp and MASS applications

7.2.3 Function Documentation

7.2.3.1 float qromo (float(x func)(float), float a, float b, float(x
choose)(float(x)(float), float, float, int), double EPS)

Parameters:
func function to integrate

a lower limit

b upper limit

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.3 nrutil.h File Reference 81

choose integrator function (e.g. midpnt())

EPS >0: absolute convergence, as in original qromo() (p.80) where
EPS is a definition; <0: signals to use the relative convergence

Returns:
void

7.3 nrutil.h File Reference

memory and errors handling in NR and data processing utilities of
TURBINA.

#include <string>

Defines

e #define float double

Functions

e int erget ()
Get the code of error (0 if no) set in the module.

e const string & ermessage ()

Get the message string set with the code returned by erget() (p.81).

e const char * ercodemessage (int ercode)

The error message by code.

e void erreset ()

Reset the error code.

e void nrerror (const char xermsg, int ercode=recipes_ercode)

Error code and message setting.

Variables

e const int recipes_ercode = -1
e const int ERNUL = (-2)
e const int ERMEM = (-3)

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.3 nrutil.h File Reference

82

e const int ERNNL = (-4)
e const int ERPAR = (-5)
e const int ERFIO = (-6)

e const int EROFL = (-7)
e const int ERNOD = (-8)
e const int ERZGR = (-9)
e const int ERSPE = (-10)
e const int ERGEO = (-11)
e const int ERCRV = (-12)

7.3.1 Detailed Description

MASS project: header file for nrutil.cpp and nrutil.c from Numerical
Recipes, former rewritten in C++.

The module implements the utilities for handling the dynamic memory stor-
ages (vectors and matrices) in the C++ style. The "new” and ”delete” in-
structions are used instead of "malloc” as in original NR’s nrutil.c. Thus,
no nrerror() (p.83) is called from the utilities themselves.

In addition to reimplementation of utilities, the error handling system is
made with utilities nrerror() (p.83) for setting and erget() (p.81), er-
message() (p-81) for checking of error codes and their messages. The error
codes are collected here for all the modules and made generalized in sense
as much as possible. The sense of the error code may be verbalized by call
to ercodemessage() (p.83).

If NR_CPP macro is defined, the C-linkage conventions for NR recipes are
not needed. Their source files are assumed to be converted in C++ com-
patible form and put in the namespace "nr”, the same as one for utilities
declared in this module.

Author:
N.Shatsky after NR Inc.

Version:
1.5

7.3.2 Define Documentation

7.3.2.1 #define float double

All the mathematics with ”float”-type is done actually in double-type in
nr.c, nrutil.cpp and MASS applications

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

7.3 nrutil.h File Reference 83

7.3.3 Function Documentation

7.3.3.1 const charx ercodemessage (int ercode)

Parameters:
ercode code

Returns:
static character string which corresponds to the code

The codes are limited to the fixed set nr::ERLO..nr::ERHI; their meaning
is obtained with this function. The particular cause of the error occured is
rather obtained by ermessage() (p.81).

7.3.3.2 void erreset ()

This function has to be called to allow the further processing of data outside
the nr-module (i.e. in SCIND and ATMOS) where it is blocked on occurence
of the error.

7.3.3.3 void nrerror (const char x ermsg, int ercode = recipes._-
ercode)

The body of the function is evaluated if no ercode is still set, to prevent
the overwriting of the information on the error which occured first. Called
from NRs with no second argument. By convention, this function serves
for declaring the error occured in any other ”scientific” module in MASS
Software - SCIND, WEIF, SCAN and ATMOS.

7.3.4 Variable Documentation

7.3.4.1 const int recipes_ercode = -1

The code set by nrerror() (p.83) by default, thus - by any standard recipe.

7.3.4.2 const int ERNUL = (-2)

Error code: NULL pointer supplied

7.3.4.3 const int ERMEM = (-3)
Error code: MEMORY allocation error

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.4 scan.hxx File Reference 84

7.3.4.4 const int ERNNL = (-4)

Error code: Allocation attempt on non-NULL array

7.3.4.5 const int ERPAR = (-5)

Error code: Non-sense parameter

7.3.4.6 const int ERFIO = (-6)
Error code: Bad file info or I/O error

7.3.4.7 const int EROFL = (-7)

Error code: Not expected count series (index storages overfull)

7.3.4.8 const int ERNOD = (-8)

Error code: no data supplied for calculations

7.3.4.9 const int ERZGR = (-9)
WEIF: Altitude grids are incompatible

7.3.4.10 const int ERSPE = (-10)
WEIF: Spectral Energy Distributions are incompatible

7.3.4.11 const int ERGEO = (-11)

WEIF: Apertures geometry or number are different

7.3.4.12 const int ERCRV = (-12)

ATMOS: Spectrum and response curve do not match

7.4 scan.hxx File Reference

Servo-scanning (centering, focussing) and scans reduction.
#include <stdio.h>

#include "iocount.h"

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.5 scind.hxx File Reference 85

Compounds

e class scan_t

7.4.1 Detailed Description

MASS project: TURBINA module file header file for scan.cpp

The module SCAN contains a set of utilities which handle the scans obtained
in any servo-regime of MASS device which involves the scanning: the count-
ing synchronous with moving of the wheel of apertures. Here "apertures”
are the focal plane diaphragms or lens settings, not the entrance apertures of
the system which are played around in SCIND and WEIF modules. Servo-
regimes are the focusing and centering of the MASS device apertures.

Author:
N. Shatsky, Sternberg Institute (kolja@sai.msu.ru)

Version:
1.5: C++ version of scan.c

7.5 scind.hxx File Reference

#include <stdio.h>
#include <math.h>

#include "iocount.h"

Namespaces

e namespace SC

7.5.1 Detailed Description

MASS project: TURBINA module file header file for scind.cpp

The module SCIND implements the calculation of stellar scintillation in-
dices observed in a number of apertures (channels). The correction of ob-
served normalized dispersion of the signal involves the background sky level,
non-linearity of the detector and the non-Poisson factor (close to 1) which
converts the mean of the detector signal into dispersion (the unity for an
ideal detector).

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.5 scind.hxx File Reference

86

As a result, the normal scintillation index is produced which is free from
photonic statistics influences and detector imperfections. The differential
indices related to the signals covariance of different channels are also com-
puted. The notions of ”aperture” and ”channel” are identical here. The
computed indices can be accessed, read or written to the disk with a num-
ber of additional utilities.

This code originates from the program select.c written by V.Kornilov for
DASS project. All the functions and constants which deal with scintillation
indices are available in the namespace "sc (p.21)”.

Usage:

For the sake of performance and simplicity, the work-arrays which are used
for calculations of indices are allocated only once, by the initiation utility
sc::init() (p.26). Deallocation is devoted to done(). After init(), all the
necessary computations are done by sc::compute() (p. 27) a certain number
of times, during which the (instant) indices should be saved to disk by
sc::write() (p.31). If the value of some parameter of sc::init() (p.26)
has changed (or if even nothing has changed), this function may be called
again, one does not need to call done() before. The additional space will be
reallocated if needed.

The index storages filled by sc::compute() (p.27) may be accessed with
sc::getidx() (p.36). The sequential number of a certain index in accessed
array may be obtained with sc::ind_seqnum() (p.25) from the name of an
aperture or of the combination of two apertures. Vice versa, the character
name of an index which is accessed as i-th in index storage is returned by
sc::apername() (p.25).

After some accumulation of indices (in local index storages), the indices can
be averaged by sc::average() (p.34). These average indices can already be
used for calculations of atmosphere models and parameters (see at::calcint()
and atm::calen2() (p. 13) in the module ATMOS). Also, they may be saved
to disk with sc::writeavg() (p. 34).

The counter of accumulated indices must be reset by sc::again() (p.31) be-
fore beginning of the next accumulation time and then the cycle of instan-
taneous index computations with sc::compute() (p.27) can be restarted.
Alternative to sc::again() (p.31) is sc::init() (p. 26).

After finishing the job, the memory should be cleaned with sc::done()
(p.31).

Note:
In principle, index averaging may be done in any moment providing
thus some on-fly smoothing of data in a time-sliding window. It is pos-
sible since the index storages work as some circular buffers, i.e. the

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

7.6 weif.cpp File Reference

87

rows which are not covered in a current accumulation time still contain
information from the previous accumulation time. Empty rows of in-
dex storages won’t be used, since the internal storage which keeps the
measurement mode is reset to “mode=unknown” each time sc::init()

(p. 26) is called.

Attention:

Internally in the module, the counts are retained related to the original
micro-exposure time, i.e. reflect the real number of pulses accumulated
during the time piece. So are the counts saved in "raw moments” file
(sc::write() (p.31)). Meanwhile, the results of sc::getmean() (p. 38),
sc::getsig() (p.39), sc::getavgflux() (p. 38) are already converted into
the units of micro-exposure (normally [ms] as assumed in documenta-
tion of functions in sc (p.21)) which was supplied to sc::compute()
(p.27) and saved internally. Also, the fluxes written by sc::writeavg()
(p. 34) are also scaled to the micro-exposure.

Author:

N. Shatsky, Sternberg Institute (kolja@sai.msu.ru)

Version:

1.5: Translation in C++ 1.51: a few sysnopsis changes, statflux err(flux)
bug corrected

7.6 weif.cpp File Reference

#include
#include
#include

#include

<math.h>
"weif .hxx"
"nrutil.h"

llnr.hll

Namespaces

e namespace wf

7.6.1 Detailed Description

MASS project: TURBINA module file weif.cpp Description is given in

weif.hxx

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

7.7 weif.hxx File Reference

88

7.7 weif.hxx File Reference

#include "scind.hxx"

#include "nrutil.h"

Namespaces

e namespace wf

Compounds

e class wf_t

7.7.1 Detailed Description

MASS project: TURBINA module file header file for weif.c

This module contains the collection of utilities suited to compute the al-
titude weighting functions for a given set of apertures for measurement of
both normal and differential scintillation indices observed with a certain
bandpasskenergy distribution of incident light.

Attention:
Spectral Energy Distributions must be photon numbers related, i.e. in
[photons/\AA], not in [erg/\AA]. Meanwhile, they still are denoted as
SED for simplicity.

This module is based on the trial program wfm2.c written by A.Tokovinin
and V. Kornilov (version Feb 26, 2001). The only bug found in that pro-
gram was incorrect memory freeing by the (modified) free_vector() function
taken from Numerical Recipes (NR) package.

The module contains the definition of the weighting function class wf_t
(p.65) and member functions for the weight calculation and input/output.
The structure bears all the data and parameters which determine the weights
and the respective altitude grid on which the weight matrix is computed.
The parameters determine the z-grid, the number of altitude steps, the
number of annular apertures with their sizes and effective wavelength.

Usage

Prior to any operation, the constructed weight structure should be filled
by wf_t::setaper() (p.68), wf_t::setzgrid() (p.70) and wf_t::calcleff()
(p.74). Being thus defined, then weight functions may be either:

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

7.7 weif.hxx File Reference

89

e read from the chosen file : the wf_t::checkfile() (p.72) is used to to
check the file to coincide with the preset weight parameters (altitudes,
wavelength, apertures). If the file fits the parameters, the weight func-
tion may be read from the file with by wf_t::read() (p.73).

e computed by wf_t::calc() (p.73).

If one gets known the new spectral energy distribution, the need to recom-
pute the weight for this SED may be verified by wf_t::calcleff() (p.74)
with parameter fir==0. Also, the general checker/computer wf::checalc()
(p. 48) is provided for the arbitrary input response function, SED and system
geometry parameters.

The parameters - the number of apertures, resulting weights (for apertures
and their combinations) and number of altitude steps - can be accessed with
wf_t::getnaper() (p.69), wf_t::getnw() (p.69) and wf_t::getnz() (p.71),
respectively. The name of the weight is obtained by the wf_t::name() (p. 69)
function according to the column number in the weight matrix.

Resulting weights may be shifted by altitude and/or recomputed for an-
other altitude grid with wf_t::interpolate() (p.75). Weight matrix can
be written in the disk file by wf_t::write() (p.71) and released with wf_-
t::clear() (p.68). Full release of memory in weight structure is done with
wf_t::setaper() (p.68) with one zero parameter. The individual values of
weight or altitude can be obtained with wf_t::getval() (p.76) and wf_-
t::getalt() (p.77); to copy some part of a certain weight function from the
weight matrix in structure into a vector, use wf_t::copy() (p.76).

The testing main() is active in module compiled as a separate executable
(set WEIFTEST macro to do so). If WEIFNTEST is set zero, the exe-
cutable shall be a simple weight computer given the responce and spectrum
functions. If it is positive, the full circle of calculations and interpolations is
done the specified number of times (say, for performance checks and memory
leaks detection).

Author:
N. Shatsky, Sternberg Institute (kolja@sai.msu.ru)

Version:
1.5: Polychromatic precise weight, in C++

1.6: Correction of a few non-significant handling bugs. New main() for
standalone weights calculations.

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

Index

~scan_t
scan_t, 60
~wi_t

wi_t, 68

accum
scan_t, 60
AFLUX
sc, 24
AFLUXP
sc, 24
again
sc, 30
ALTFMT
atm, 21
ANGFMT
atm, 21
apername
sc, 25
atm, 4
ALTFMT, 21
ANGFMT, 21
ATMDLM, 21
ATMPAR, 7
avgint, 15
calcint, 12
calen2, 13
CHI2FMT, 21
CN2FMT, 21
cn2method, 7
CN2PROF, 7
done, 10
DZCN2, 20
ERRFMT, 20
FHEFF, 6
FITSCIND, 20
FIXEDLAY, 7
FLOATLAY, 7
FMO, 6
FSEE, 6
getcn2, 12

getcn2see, 11
geterr, 11
getfmt, 18
getname, 18
getncn2, 11
geto_csi, 15
getval, 10
getzen2, 11
HBOUND, 20
HEAD, 18
HEFFMT, 21
IEFF, 7
IFSE, 7

I1SK, 7

ISP, 7
interpolate, 17
ISOPL, 7
IWSE, 7

KP, 20

KS, 20

KT, 20

M2, 7
MAXNBASE, 19
MINRELW, 19
NMEAS, 19
NMODE, 18
NPOWER, 19
O_CSCIND, 7
ordint, 6
POWEFF, 19
poweridx, 7
POWISK, 19
POWISP, 19
POWSEE, 19
TAUFMT, 21
TC, 7
update, 7
USEWEIGHT, 19
what, 7
WHEFF, 7
WMO, 6

INDEX

91

write, 17

WSEE, 6
ATMDLM

atm, 21
atmos.hxx, 77
ATMPAR

atm, 7
average

sc, 33
avgint

atm, 15
avgmatrix

sc, 32

calc

wi_t, 73
calcint

atm, 12
calcleff

wf_t, 74
calen?2

atm, 13
center

scan_t, 61
chan_init

sc, 26
checalc

wf, 48
checkfile

wft, 72
CHI2FMT

atm, 21
clear

wi_t, 68
CN2FMT

atm, 21
cn2method

atm, 7
CN2PROF

atm, 7
compute

sc, 27
conwgrid

wi, 55

copy
wi_t, 76

defocus

scan_t, 64
DESI

sc, 24
DESIBIN

sc, 44
direct

scan_t, 59
done

atm, 10

sc, 31
DSI

sc, 24
DZ

wf, 56
DZCN2

atm, 20
DZMIN

wi, 57

EPSD

wf, 57
EPSDZ

wf, 57
EPSLEFF

wf, 57
ercodemessage

nrutil.h, 83
ERCRV

nrutil.h, 84
ERFIO

nrutil.h, 84
ERGEO

nrutil.h, 84
erget

nrutil.h, 81
ERMEM

nrutil.h, 83
ermessage

nrutil.h, 81
ERNNL

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

INDEX

92

nrutil.h, 83
ERNOD
nrutil.h, 84
ERNUL
nrutil.h, 83
EROFL
nrutil.h, 84
ERPAR
nrutil.h, 84
erreset
nrutil.h, 83
ERRFMT
atm, 20
sc, 44
ERSPE
nrutil.h, 84
ERZGR
nrutil.h, 84

FHEFF

atm, 6
FITSCIND

atm, 20
FIXEDLAY

atm, 7
flama

wf, 52
float

nr.h, 80

nrutil.h, 82
FLOATLAY

atm, 7
fluxprec

sc, 43
FLXDLM

sc, 44
FLXFMT

sc, 44
FLXPREC

sc, 44
FMO

atm, 6
FSEE

atm, 6

get

scan_t, 61
getalt

wi_t, 77
getavgflux

sc, 38
getavgidx

sc, 36
getavgidxptr

sc, 36
getblue

wi_t, 76
getcn2

atm, 12
getcn2see

atm, 11
getcurmeas

sc, 30
geter2idxptr

sc, 37
geterr

atm, 11
geterrflux

sc, 39
geterridx

sc, 37
getfmt

atm, 18
getidx

sc, 35
getidxptr

sc, 36
getleff

wi_t, 76
getmean

sc, 38
getname

atm, 18
getnaper

wi_t, 69
getncn?2

atm, 11
getnw

wi_t, 69

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

INDEX 03

getnz ISOPL
wf_t, 70 atm, 7
geto_csi IWSE
atm, 15 atm, 7
getred
wf t, 76 KP
getsig atm, 20
sc, 39 KS
getspechar atm, 20
wf, 53 KT
getval atm, 20
atfné’ ;g LEFFFIX
v wf, 47
getzcn LEFFTEST
atm, 11 Wi, 47
getashift LEFFTYPE
wf, 47 Wi, 47
HBOUND loadcenter
atm, 20 scan_t, 63
HEAD loadconst
atm, 18 scan_t, 62
HEFFM’T loadfocus
atm, 21 scan_t, 63
LTEXT
IDXDLM wf, 57
sc, 44
IDXFMT M2
sc, 44 atm, 7
IEFF ’ make_fft
atm, 7 wf, 50
IFSE MAX_DIAM
atm, 7 wf, 56
ISK MAXLAG
atm, 7 sc, 45
nsp MAXNBASE
atm, 7 atm, 19
ind_seqnum MA)‘SFZE)G
init o merge
sc, 25 scan-t, 61
interpolate MINRELW
atm, 17 atm, 19
wf_t’ 75 MKM_RANGE
’ wf, 57

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch
© 1997-2002

INDEX

94

MODEGEN
sc, 45
MODENO
sc, 45
MODENORM
sc, 45
MOM
sc, 24
MOMDLM
sc, 45
MOMFMT
sc, 45

name
wi_t, 69
napcomb
sc, 25
NMEAS
atm, 19
NMODE
atm, 18
NPOWER
atm, 19
nr.h, 79
float, 80
qromo, 80
nrerror
nrutil.h, 83
nrutil.h, 81
ercodemessage, 83
ERCRV, 84
ERFIO, 84
ERGEO, 84
erget, 81
ERMEM, 83
ermessage, 81
ERNNL, 83
ERNOD, 84
ERNUL, 83
EROFL, 84
ERPAR, 84
erreset, 83
ERSPE, 84
ERZGR, 84

float, 82
nrerror, 83
recipes_ercode, 83

O_CSCIND
atm, 7
ordint
atm, 6

PFMT
sc, 44
POWEFF
atm, 19
poweridx
atm, 7
POWISK
atm, 19
POWISP
atm, 19
POWSEE
atm, 19
progress
wf, 48

qromo
nr.h, 80

read

wft, 73
read2col

wf, 54
recipes_ercode

nrutil.h, 83

sc, 21
AFLUX, 24
AFLUXP, 24
again, 30
apername, 25
average, 33
avgmatrix, 32
chan_init, 26
compute, 27
DESI, 24
DESIBIN, 44

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

INDEX

95

done, 31
DSI, 24
ERRFMT, 44
fluxprec, 43
FLXDLM, 44
FLXFMT, 44
FLXPREC, 44
getavgflux, 38
getavgidx, 36
getavgidxptr, 36
getcurmeas, 30
geter2idxptr, 37
geterrflux, 39
geterridx, 37
getidx, 35
getidxptr, 36
getmean, 38
getsig, 39
IDXDLM, 44
IDXFMT, 44
ind_seqnum, 25
init, 25
MAXLAG, 45
MODEGEN, 45
MODENQO, 45
MODENORM, 45
MOM, 24
MOMDLM, 45
MOMFMT, 45
napcomb, 25
PFMT, 44
scwhat, 24
statflux, 41
stattest, 39
write, 31
writeavg, 34
scan.hxx, 84
scan_t, 57
~scan_t, 60
accum, 60
center, 61
defocus, 64
direct, 59
get, 61

loadcenter, 63

loadconst, 62

loadfocus, 63

merge, 61

scan_t, 60

set, 60

xshift, 63

yshift, 64
scind.hxx, 85
scwhat

sc, 24
sdum

wi, 51
sedcrv

wf, 55
set

scan_t, 60
setaper

wf_t, 68
setzgrid

wf_t, 69
sfunc

wf, 51
statflux

sc, 41
stattest

sc, 39

TAUFMT
atm, 21
TC
atm, 7

update
atm, 7
USEWEIGHT
atm, 19

weif.cpp, 87
weif.hxx, 88
weight
wf, 52
wf, 45
checalc, 48
conwgrid, 55

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

INDEX

96

DZ, 56
DZMIN, 57
EPSD, 57
EPSDZ, 57
EPSLEFF, 57
flama, 52
getspechar, 53
getzshift, 47
LEFFFIX, 47
LEFFTEST, 47

LEFFTYPE, 47

LTEXT, 57
make_fft, 50

MAX_DIAM, 56

MAXNZ, 56

MKM_RANGE, 57

progress, 48
read2col, 54
sdum, 51
sedcrv, 55
sfunc, 51
weight, 52
WSCALE, 56
WVALEN, 56
Z0, 56
zgrid_set, 49
ZMAX, 56
wi_t, 65
~wf_t, 68
calc, 73
calcleff, 74
checkfile, 72
clear, 68
copy, 76
getalt, 77
getblue, 76
getleff, 76
getnaper, 69
getnw, 69
getnz, 70
getred, 76
getval, 76
interpolate, 75
name, 69

read, 73

setaper, 68
setzgrid, 69

wi_t, 65

write, 71
what

atm, 7
WHEFF

atm, 7
WMO0

atm, 6
write

atm, 17

sc, 31

wit, 71
writeavg

sc, 34
WSCALE

wf, 56
WSEE

atm, 6
WVALEN

wf, 56

xshift

scan_t, 63

yshift

scan_t, 64

Z0
wf, 56
zgrid_set
wf, 49
ZMAX
wf, 56

Generated on Wed Apr 3 18:00:32 2002 for Part II. by Doxygen written by Dimitri van Heesch

© 1997-2002

